Problems: Change of Variables

Compute $\iint_{R}\left(\frac{x+y}{2-x+y}\right)^{4} d x d y$, where R is the square with vertices at $(1,0),(0,1)$, $(-1,0)$ and $(0,-1)$.
Answer: Since the region is bounded by the lines $x+y= \pm 1$ and $x-y= \pm 1$, we make a change of variables:

$$
u=x+y \quad v=x-y
$$

Computing the Jacobian: $\frac{\partial(u, v)}{\partial(x, y)}=-2 \Rightarrow \frac{\partial(x, y)}{\partial(u, v)}=-1 / 2$.
Thus, $d x d y=\frac{1}{2} d u d v$.
Using either method 1 or method 2 we see the boundaries are given by $u= \pm 1, v= \pm 1 \Rightarrow$ the integral is $\iint_{R}\left(\frac{x+y}{w-x+y}\right)^{4} d x d y=\int_{-1}^{1} \int_{-1}^{1}\left(\frac{u}{2-v}\right)^{4} \frac{1}{2} d u d v$.
Inner integral $=\left.\frac{u^{5}}{10(2-v)^{4}}\right|_{u=-1} ^{u=1}=\frac{1}{5(2-v)^{4}}$.
Outer integral $=\left.\frac{1}{15(2-v)^{3}}\right|_{-1} ^{1}=\frac{26}{405} \approx .06$.
We're integrating the fourth power of a fraction whose numerator ranges between -1 and 1 and whose denominator ranges between 1 and 3 . The value of this integrand will always be positive and will often be small, so this answer seems reasonable.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

