Fundamental Theorem for Line Integrals

Gradient fields and potential functions

Earlier we learned about the gradient of a scalar valued function

$$\nabla f(x,y) = \langle f_x, f_y \rangle.$$

For example, $\nabla x^3 y^4 = \langle 3x^2y^4, 4x^3y^3 \rangle$.

Now that we know about vector fields, we recognize this as a special case. We will call it a gradient field. The function f will be called a *potential function* for the field.

For gradient fields we get the following theorem, which you should recognize as being similar to the fundamental theorem of calculus. y

Theorem (Fundamental Theorem for line integrals) If $\mathbf{F} = \nabla f$ is a gradient field and *C* is *any* curve with endpoints $P_0 = (x_0, y_0)$ and $P_1 = (x_1, y_1)$ then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(x, y)|_{P_0}^{P_1} = f(x_1, y_1) - f(x_0, y_0).$$

That is, for gradient fields the line integral is independent of the path taken, i.e., it depends only on the endpoints of C.

Example 1: Let $f(x, y) = xy^3 + x^2 \Rightarrow \mathbf{F} = \nabla f = \langle y^3 + 2x, 3xy^2 \rangle$ Let C be the curve shown and compute $I = \int_C \mathbf{F} \cdot d\mathbf{r}$.

Do this both directly (as in the previous topic) and using the above formula. Method 1: parametrize C: x = x, y = 2x, $0 \le x \le 1$.

$$\Rightarrow I = \int_{C} (y^{3} + 2x) \, dx + 3xy^{2} \, dy = \int_{0}^{1} (8x^{3} + 2x) \, dx + 12x^{3}2 \, dx$$
$$= \int_{0}^{1} 32x^{3} + 2x \, dx = 9.$$
Method 2:
$$\int_{C} \nabla f \cdot d\mathbf{r} = f(1, 2) - f(0, 0) = 9.$$

Proof of the fundamental theorem

$$\int_{C} \nabla f \cdot d\mathbf{r} = \int_{C} f_{x} dx + f_{y} dy = \int_{t_{0}}^{t_{1}} \left[f_{x}(x(t), y(t)) \frac{dx}{dt} + f_{y}(x(t), y(t)) \frac{dy}{dt} \right] dt$$
$$= \int_{t_{0}}^{t_{1}} \frac{d}{dt} f(x(t), y(t)) dt = f(x(t), y(t))|_{t_{0}}^{t_{1}} = f(P_{1}) - f(P_{0}) \quad \bullet$$

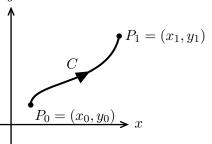
The third equality above follows from the chain rule.

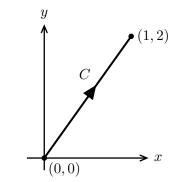
Significance of the fundamental theorem

For gradient fields \mathbf{F} the work integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ depends only on the endpoints of the path. We call such a line integral *path independent*.

The special case of this for closed curves C gives:

$$\mathbf{F} = \mathbf{\nabla} f \Rightarrow \oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \quad (\text{proof below}).$$





Following physics, where a conservative force does no work around a closed loop, we say $\mathbf{F} = \nabla f$ is a *conservative* field.

Example 1: If **F** is the electric field of an electric charge it is conservative.

Example 2: The gravitational field of a mass is conservative.

Differentials: Here we can use differentials to rephrase what we've done before. First recall:

a)
$$\nabla f = f_x \mathbf{i} + f_y \mathbf{j} \Rightarrow \nabla f \cdot d\mathbf{r} = f_x dx + f_y dy.$$

b) $\int_C \nabla f \cdot d\mathbf{r} = f(P_1) - f(p_0).$

Using differentials we have $df = f_x dx + f_y dy$. (This is the same as $\nabla f \cdot d\mathbf{r}$.) We say M dx + N dy is an *exact differential* if M dx + N dy = df for some function f.

As in (b) above we have
$$\int_C M dx + N dy = \int_C df = f(P_1) - f(P_0).$$

Proof that path independence is equivalent to conservative

We show that

$$\int_C \mathbf{F} \cdot d\mathbf{r} \quad \text{is path independent for any curve } C$$

is equivalent to

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \quad \text{for any closed path.}$$

This is not hard, it is really an exercise to demonstrate the logical structure of a proof showing equivalence. We have to show:

i) Path independence \Rightarrow the line integral around any closed path is 0.

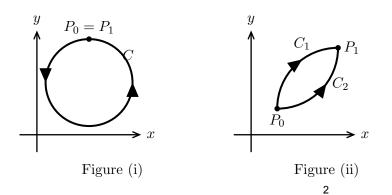
ii) The line integral around all closed paths is $0 \Rightarrow$ path independence.

i) Assume path independence and consider the closed path C shown in figure (i) below. Since the starting point P_0 is the same as the endpoint P_1 we get $\oint_C \mathbf{F} \cdot d\mathbf{r} = f(P_1) - f(P_0) = 0$ (this proves (i)).

ii) Assume $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any closed curve. If C_1 and C_2 are both paths between P_0 and P_1 (see fig. 2) then $C_1 - C_2$ is a closed path. So by hypothesis

$$\oint_{C_1 - C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 0 \implies \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}.$$

That is the line integral is path independent, which proves (ii).



MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.