18.02 Practice Exam 3 A

1. Let (\bar{x}, \bar{y}) be the center of mass of the triangle with vertices at $(-2,0),(0,1),(2,0)$ and uniform density $\delta=1$.
a) (10) Write an integral formula for \bar{y}. Do not evaluate the integral(s), but write explicitly the integrand and limits of integration.
b) (5) Find \bar{x}.
2. (15) Find the polar moment of inertia of the unit disk with density equal to the distance from the y-axis.
3. Let $\vec{F}=\left(a x^{2} y+y^{3}+1\right) \hat{\mathbf{\imath}}+\left(2 x^{3}+b x y^{2}+2\right) \hat{\mathbf{j}}$ be a vector field, where a and b are constants.
a) (5) Find the values of a and b for which \vec{F} is conservative.
b) (5) For these values of a and b, find $f(x, y)$ such that $\vec{F}=\nabla f$.
c) (5) Still using the values of a and b from part (a), compute $\int_{C} \vec{F} \cdot d \vec{r}$ along the curve C such that $x=e^{t} \cos t, y=e^{t} \sin t, 0 \leq t \leq \pi$.
4. (10) For $\vec{F}=y x^{3} \hat{\mathbf{1}}+y^{2} \hat{\mathbf{\jmath}}$, find $\int_{C} \vec{F} \cdot d \vec{r}$ on the portion of the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$.
5. Consider the region R in the first quadrant bounded by the curves $y=x^{2}, y=x^{2} / 5, x y=2$, and $x y=4$.
a) (10) Compute $d x d y$ in terms of $d u d v$ if $u=x^{2} / y$ and $v=x y$.
b) (10) Find a double integral for the area of R in $u v$ coordinates and evaluate it.
6. a) (5) Let C be a simple closed curve going counterclockwise around a region R. Let $M=M(x, y)$. Express $\oint_{C} M d x$ as a double integral over R.
b) (5) Find M so that $\oint_{C} M d x$ is the mass of R with density $\delta(x, y)=(x+y)^{2}$.
7. Consider the region R enclosed by the x-axis, $x=1$ and $y=x^{3}$.
a) (5) Use the normal form of Green's theorem to find the flux of $\vec{F}=\left(1+y^{2}\right) \hat{\mathbf{j}}$ out of R.
b) (5) Find the flux out of R through the two sides C_{1} (the horizontal segment) and C_{2} (the vertical segment).
c) (5) Use parts (a) and (b) to find the flux out of the third side C_{3}.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

