Work integrals

1. Let C be the path from (0,0) to (5,5) consisting of the straight line from (0,0) to $(5\sqrt{2},0)$ followed by the arc from $(5\sqrt{2},0)$ to (5,5) that is part of the circle of radius $5\sqrt{2}$ centered at the origin.

Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ for the following vector fields \mathbf{F} a) $\mathbf{F} = x \mathbf{i} + y \mathbf{j}$; b) $\mathbf{F} = x \mathbf{j}$.

(Remember to work smart and exploit geometry where possible.)

Answer: We have
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$
.

a) We note that $\mathbf{F} \perp C_2$ everywhere, so $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 0 \Rightarrow \int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r}$.

On C_1 we have y = 0, so dy = 0, and x runs from 0 to $5\sqrt{2}$. Taking M = x, N = y we have

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} M \, dx + N \, dy = \int_{C_1} x \, dx + y \, dy = \int_0^{5\sqrt{2}} x \, dx = 25.$$

The work integral = 25.

b) In this case, $\mathbf{F} \perp C_1$, so

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} x \, dy.$$

We parametrize C_2 by $x = 5\sqrt{2}\cos t$; $y = 5\sqrt{2}\sin t$; $0 \le t \le \pi/4$. This gives

$$\int_{C_2} x \, dy = \int_0^{\pi/4} 50 \cos^2 t \, dt = \int_0^{\pi/4} 50 \left(\frac{1 + \cos 2t}{2}\right) \, dt = \frac{25\pi}{4} + \frac{25}{2}$$

The work integral is $\frac{25\pi}{4} + \frac{25}{2}$.

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.