Work integrals

1. Let C be the path from $(0,0)$ to $(5,5)$ consisting of the straight line from $(0,0)$ to $(5 \sqrt{2}, 0)$ followed by the arc from $(5 \sqrt{2}, 0)$ to $(5,5)$ that is part of the circle of radius $5 \sqrt{2}$ centered at the origin.
Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for the following vector fields \mathbf{F}
a) $\mathbf{F}=x \mathbf{i}+y \mathbf{j} ;$
b) $\mathbf{F}=x \mathbf{j}$.
(Remember to work smart and exploit geometry where possible.)
Answer: We have $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$.

a) We note that $\mathbf{F} \perp C_{2}$ everywhere, so $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=0 \Rightarrow \int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$.

On C_{1} we have $y=0$, so $d y=0$, and x runs from 0 to $5 \sqrt{2}$. Taking $M=x, N=y$ we have

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} M d x+N d y=\int_{C_{1}} x d x+y d y=\int_{0}^{5 \sqrt{2}} x d x=25
$$

The work integral $=25$.
b) In this case, $\mathbf{F} \perp C_{1}$, so

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} x d y
$$

We parametrize C_{2} by $x=5 \sqrt{2} \cos t ; \quad y=5 \sqrt{2} \sin t ; \quad 0 \leq t \leq \pi / 4$. This gives

$$
\int_{C_{2}} x d y=\int_{0}^{\pi / 4} 50 \cos ^{2} t d t=\int_{0}^{\pi / 4} 50\left(\frac{1+\cos 2 t}{2}\right) d t=\frac{25 \pi}{4}+\frac{25}{2}
$$

The work integral is $\frac{25 \pi}{4}+\frac{25}{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

