Vector derivatives and arc length

1. Let $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}$.
a) Compute, velocity, speed, unit tangent vector and acceleration.
b) Write down the integral for arc length from $t=1$ to $t=4$. (Do not compute the integral.)

Answer: a) Velocity $=\mathbf{v}=\frac{d \mathbf{r}}{d t}=\left\langle 2 t, 3 t^{2}\right\rangle$.
Speed $=|\mathbf{v}|=\sqrt{4 t^{2}+9 t^{4}}$.
Unit tangent vector $=\mathbf{T}=\frac{\mathbf{v}}{d s / d t}=\left\langle\frac{2 t}{\sqrt{4 t^{2}+9 t^{4}}}, \frac{3 t^{2}}{\sqrt{4 t^{2}+9 t^{4}}}\right\rangle$.
b) Arc length $=\int_{1}^{4} \frac{d s}{d t} d t=\int_{1}^{4} \sqrt{4 t^{2}+9 t^{4}} d t$.
2. Consider the parametric curve

$$
x(t)=3 t+1, \quad y(t)=4 t+3 .
$$

a. Compute, velocity, speed, unit tangent vector and acceleration.
b. Compute the arc length of the trajectory from $t=0$ to $t=2$.
$\underline{\text { Answer: }}$ a) Velocity $=\mathbf{v}=\frac{d \mathbf{r}}{d t}=\langle 3,4\rangle$.
Speed $=|\mathbf{v}|=\sqrt{9+16}=5$.
Unit tangent vector $=\mathbf{T}=\frac{\mathbf{v}}{d s / d t}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$.
b) Arc length $=\int_{0}^{2} \frac{d s}{d t} d t=\int_{0}^{2} 5 d t=10$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

