Problems: Mass and Average Value

Let R be the quarter of the unit circle in the first quadrant with density $\delta(x, y)=y$.

1. Find the mass of R.

Because R is a circular sector, it makes sense to use polar coordinates. The limits of integration are then $0 \leq r \leq 1$ and $0 \leq \theta \leq \pi / 2$. In addition we have $\delta=r \sin \theta$. To find the mass of the region, we integrate the product of density and area.

$$
\begin{aligned}
M & =\iint_{R} \delta d A \\
& =\int_{0}^{\pi / 2} \int_{0}^{1}(r \sin \theta) r d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} r^{2} \sin \theta d r d \theta
\end{aligned}
$$

Inner: $\left.\frac{1}{3} r^{3} \sin \theta\right|_{0} ^{1}=\frac{1}{3} \sin \theta$.
Outer: $-\left.\frac{1}{3} \cos \theta\right|_{0} ^{\pi / 2}=\frac{1}{3}$.
The region has mass $1 / 3$.
This seems like a reasonable conclusion - the region has area a little greater than $1 / 2$ and average density around $1 / 2$.
2. Find the center of mass.

The center of mass $\left(x_{c m}, y_{c m}\right)$ is described by

$$
x_{c m}=\frac{1}{M} \iint_{R} x \delta d A \quad \text { and } \quad y_{c m}=\frac{1}{M} \iint_{R} y \delta d A
$$

From (1), $M=\frac{1}{3}$.

$$
\begin{aligned}
x_{c m} & =\frac{1}{M} \iint_{R} x \delta d A \\
& =3 \int_{0}^{\pi / 2} \int_{0}^{1}(r \cos \theta)(r \sin \theta) r d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} 3 r^{3} \cos \theta \sin \theta d r d \theta
\end{aligned}
$$

Inner: $\left.\frac{3}{4} r^{4} \cos \theta \sin \theta\right|_{0} ^{1}=\frac{3}{4} \cos \theta \sin \theta$.
Outer: $\left.\frac{3}{4} \frac{1}{2}(\sin \theta)^{2}\right|_{0} ^{\pi / 2}=\frac{3}{8}=x_{c m}$.

$$
\begin{aligned}
y_{c m} & =\frac{1}{M} \iint_{R} y \delta d A \\
& =3 \int_{0}^{\pi / 2} \int_{0}^{1}(r \sin \theta)(r \sin \theta) r d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} 3 r^{3} \sin ^{2} \theta d r d \theta
\end{aligned}
$$

Inner: $\left.\frac{3}{4} r^{4} \sin ^{2} \theta\right|_{0} ^{1}=\frac{3}{4} \sin ^{2} \theta$.
Outer: $\left.\frac{3}{4}\left(\frac{\theta}{2}-\frac{1}{4} \sin (2 \theta)\right)\right|_{0} ^{\pi / 2}=\frac{3 \pi}{16}=y_{c m}$.
The center of mass is at $\left(\frac{3}{8}, \frac{3}{4}\right) \approx(.4, .6)$.
This point is within R and agrees with our intuition that $x_{c m}<1 / 2$ and $y_{c m}>x_{c m}$.
3. Find the average distance from a point in R to the x axis.

To find the average of a function $f(x, y)$ over an area, we compute $\frac{1}{\text { Area }} \iint_{R} f(x, y) d A$. Here $f(x, y)=y$.

$$
\begin{aligned}
\frac{1}{\text { Area }} \iint_{R} y d A & =\frac{1}{\pi / 4} \int_{0}^{\pi / 2} \int_{0}^{1}(r \sin \theta) r d r d \theta \\
& =\frac{4}{\pi} \int_{0}^{\pi / 2} \int_{0}^{1} r^{2} \sin \theta d r d \theta
\end{aligned}
$$

This should look familiar - we computed in (1) that $\int_{0}^{\pi / 2} \int_{0}^{1} r^{2} \sin \theta d r d \theta=\frac{1}{3}$. The average distance from a point in R to the x axis is $\frac{4}{\pi} \cdot \frac{1}{3}=\frac{4}{3 \pi}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

