Product rule for vector derivatives

1. If $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$ are two parametric curves show the product rule for derivatives holds for the cross product.

Answer: As with the dot product, this will follow from the usual product rule in single variable calculus. We want to show

$$
\frac{d\left(\mathbf{r}_{1} \times \mathbf{r}_{2}\right)}{d t}=\mathbf{r}_{1}^{\prime} \times \mathbf{r}_{2}+r_{1} \times \mathbf{r}_{2}^{\prime} .
$$

Let $\mathbf{r}_{1}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle \quad$ and $\quad \mathbf{r}_{2}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$. We have,

$$
\mathbf{r}_{1} \times \mathbf{r}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=\left\langle y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-y_{1} x_{2}\right\rangle
$$

Taking derivatives using the product rule from single variable calculus, we get a lot of terms, which we can group to prove the vector formula.

$$
\begin{aligned}
\frac{d\left(\mathbf{r}_{1} \times \mathbf{r}_{2}\right)}{d t} & =\left\langle y_{1}^{\prime} z_{2}+y_{1} z_{2}^{\prime}-z_{1}^{\prime} y_{2}-z_{1} y_{2}^{\prime}, z_{1}^{\prime} x_{2}+z_{1} x_{2}^{\prime}-x_{1}^{\prime} z_{2}-x_{1} z_{2}^{\prime}, x_{1}^{\prime} y_{2}+x_{1} y_{2}^{\prime}-y_{1}^{\prime} x_{2}-y_{1} x_{2}^{\prime}\right\rangle \\
& =\left\langle\left(y_{1}^{\prime} z_{2}-z_{1}^{\prime} y_{2}\right)+\left(y_{1} z_{2}^{\prime}-z_{1} y_{2}^{\prime}\right),\left(z_{1}^{\prime} x_{2}-x_{1}^{\prime} z_{2}\right)+\left(z_{1} x_{2}^{\prime}-x_{1} z_{2}^{\prime}\right),\left(x_{1}^{\prime} y_{2}-y_{1}^{\prime} x_{2}\right)+\left(x_{1} y_{2}^{\prime}-y_{1} x_{2}^{\prime}\right)\right\rangle \\
& =\left\langle x_{1}^{\prime}, y_{1}^{\prime}, z_{1}^{\prime}\right\rangle \times\left\langle x_{2}, y_{2}, z_{2}\right\rangle+\left\langle x_{1}, y_{1}, z_{1}\right\rangle \times\left\langle x_{2}^{\prime}, y_{2}^{\prime}, z_{2}^{\prime}\right\rangle \\
& =\mathbf{r}_{1}^{\prime} \times \mathbf{r}_{2}+\mathbf{r}_{1} \times \mathbf{r}_{2}^{\prime} .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

