Problems: Applications of Spherical Coordinates

Find the average distance of a point in a solid sphere of radius a from:
(a) the center,
(b) a fixed diameter, and
(c) a fixed plane through the center.

Answer: Recall that the average value of a function $f(x, y, z)$ over a volume D is given by $\frac{1}{V} \iiint_{D} f(x, y, z) d V$. We know $V=\frac{4}{3} \pi a^{3}$. For each of these problems, we'll assume D is a sphere centered at the origin.
(a) In this case, $f(x, y, z)=\rho$ and so:

$$
\begin{aligned}
\text { A.V. } & =\frac{1}{4 \pi a^{3} / 3} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} \rho^{3} \sin \phi d \rho d \phi d \theta \\
& =\frac{1}{4 \pi a^{3} / 3} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{1}{4} a^{4} \sin \phi d \phi d \theta \\
& =\frac{3 a}{16 \pi} \int_{0}^{2 \pi} 2 d \theta \\
& =\frac{3 a}{8 \pi}(2 \pi)=3 a / 4
\end{aligned}
$$

(b) Here we'll use the z-axis as the diameter in question, in which case $f=r=\rho \sin \phi$.

$$
\begin{aligned}
\text { A.V. } & =\frac{1}{4 \pi a^{3} / 3} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta \\
& =\frac{3}{4 \pi a^{3}} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{a^{4}}{4} \sin ^{2} \phi d \phi d \theta \\
& =\frac{3 a}{16 \pi} \int_{0}^{2 \pi} \frac{\pi}{2} d \theta \\
& =\frac{3 a}{32} \cdot(2 \pi)=3 \pi a / 16
\end{aligned}
$$

(c) If we choose the $x y$-plane, $f=|z|$. Because spheres are symmetric the average value of the upper half will equal the average value over the whole sphere, so we compute just that $\left(V=\frac{2}{3} \pi a^{3}\right)$.

$$
\begin{aligned}
\text { A.V. } & =\frac{3}{2 \pi a^{3}} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{a} \rho^{3} \cos \phi \sin \phi d \rho d \phi d \theta \\
& =\frac{3}{2 \pi a^{3}} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \frac{a^{4}}{4} \cos \phi \sin \phi d \phi d \theta \\
& =\frac{3 a}{8 \pi} \int_{0}^{2 \pi} \frac{1}{2} d \theta \\
& =\frac{3 a}{16 \pi}(2 \pi)=3 a / 8
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

