Moment of inertia

1. Let R be the triangle with vertices $(0,0),(1,0),(1, \sqrt{3})$ and density $\delta=1$. Find the polar moment of inertia.

Answer: The region R is a $30,60,90$ triangle.

The polar moment of inertia is the moment of inertia around the origin (that is, the z-axis). The figure shows the triangle and a small square piece within R. If the piece has area $d A$ then its polar moment of inertia is $d I=r^{2} \delta d A$. Summing the contributions of all such pieces and using $\delta=1, d A=r d r d \theta$, we get the total moment of inertia is

$$
I=\iint_{R} r^{2} \delta d A=\iint_{R} r^{2} r d r d \theta=\iint_{R} r^{3} d r d \theta
$$

Next we find the limits of integration in polar coordinates. The line

$$
x=1 \Leftrightarrow r \cos \theta=1 \Leftrightarrow r=\sec \theta
$$

So, using radial stripes, the limits are: (inner) r from 0 to $\sec \theta ;$ (outer) θ from 0 to $\pi / 3$. Thus,

$$
I=\int_{0}^{\pi / 3} \int_{0}^{\sec \theta} r^{3} d r d \theta
$$

Inner integral: $\frac{\sec ^{4} \theta}{4}$.
Outer integral: Use $\sec ^{4} \theta=\sec ^{2} \theta \sec ^{2} \theta=\left(1+\tan ^{2} \theta\right) d(\tan \theta) \Rightarrow$ the outer integral is

$$
\left.\frac{1}{4}\left(\tan \theta+\frac{\tan ^{3} \theta}{3}\right)\right|_{0} ^{\pi / 3}=\frac{1}{4}\left(\sqrt{3}+\frac{(\sqrt{3})^{3}}{3}\right)=\frac{\sqrt{3}}{2}
$$

The polar moment of inertia is $\frac{\sqrt{3}}{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

