Fundamental Theorem for Line Integrals

1. Let $f=x y+\mathrm{e}^{x}$.
a) Compute $\mathbf{F}=\boldsymbol{\nabla} f$.
b) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for each of the following paths from $(0,0)$ to $(2,1)$.
i) The path consisting of a horizontal segment followed by a vertical segment.
ii) The path consisting of a vertical segment followed by a horizontal segment.
iii) The straight line from $(0,0)$ to $(2,1)$.
c) All of the answers to part (b) should be the same. Show they agree with the answer given by the fundamental theorem for line integrals.
Answer: a) $\mathbf{F}=\boldsymbol{\nabla} f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle y+\mathrm{e}^{x}, x\right\rangle$.
b) We have $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C}\left(y+\mathrm{e}^{x}\right) d x+x d y$.
(i)

(ii)

i) The curve C has two pieces C_{1} and C_{2}. We compute the integral over each piece separately.
$C_{1}: \quad x$ runs from 0 to $2 ; y=0, d y=0$. So,

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} \mathrm{e}^{x} d x=\mathrm{e}^{2}-1
$$

$C_{2}: \quad x=2, d x=0 ; y$ runs from 0 to 1. So,

$$
\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1} 2 d y=2
$$

Summing the two pieces: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}+C_{2}} \mathbf{F} \cdot d \mathbf{r}=\mathrm{e}^{2}+1$.
ii) This is similar to part (i).
$C_{1}: \quad x=0, d x=0 ; \quad y$ runs from 0 to 1 . So,

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1} 0 d y=0
$$

$C_{2}: \quad x$ runs from 0 to $2 ; \quad y=1, d y=0$. So,

$$
\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} 1+\mathrm{e}^{x} d x=2+\mathrm{e}^{2}-1=1+\mathrm{e}^{2}
$$

Summing the two pieces: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}+C_{2}} \mathbf{F} \cdot d \mathbf{r}=\mathrm{e}^{2}+1$.
iii) We parametrize C by $x=2 t ; \quad y=t ; \quad t$ runs from 0 to $1 \Rightarrow d x=2 d t, d y=d t$. Thus,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(t+\mathrm{e}^{2 t}\right) 2 d t+2 t d t=\int_{0}^{1}\left(4 t+2 \mathrm{e}^{2 t}\right) d t=2 t^{2}+\left.\mathrm{e}^{2 t}\right|_{0} ^{1}=2+\mathrm{e}^{2}-1=1+\mathrm{e}^{2} .
$$

c) The fundamental theorem for line integrals says (for any of the paths in part (b))

$$
\int_{C} \boldsymbol{\nabla} f \cdot d \mathbf{r}=f(2,1)-f(0,0)=2+\mathrm{e}^{2}-1=1+\mathrm{e}^{2}
$$

All the answers agree.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

