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CHRISTINE

BREINER:

Welcome back to recitation. In this video, I'd like us to work on the following problem.

So the problem is as follows. For which of the following vector fields is the domain where each

vector field is defined and continuously differentiable a simply connected region. So there's a

lot there. I'm going to break that down first, and then show you the vector fields.

So we're starting with some different vector fields. And we want to determine first the domain

for each vector field where it is both defined and continuously differentiable. And then once

you've determined that domain, the next object is to determine whether or not that region is

simply connected. So there are two parts for each of these problems.

So again, the first thing is you want to determine all of the values for which the vector field is

both defined and continuously differentiable. You want to look at that region that contains all

those values, and you want to determine if that region is simply connected. So there are four

different vector fields, and I'll just point them out here. They're all in the plane.

So the first one is root x i plus root y j. The second one is i plus j, divided by the square root of

1 minus x squared minus y squared. The third one looks fairly similar to the second one, but

it's i plus j, divided by the square root of the quantity x squared plus y squared minus 1. And

the fourth one is i plus j times the quantity natural log of r squared-- natural log of x squared

plus y squared.

So there are four different vector fields here. You have do two things for each one. So find the

domain where it's defined and continuously differentiable, and then determine if that domain is

simply connected. So why don't you pause the video, work on these, and then when you're

ready to see what I did, you can bring the video back up.

OK, welcome back. So we're going to do this problem one vector field at a time. We're going to

take each vector field, I'm going to determine where it's defined and differentiable, and then

I'm going to determine if that region is simply connected. So we're going to do each one

separately.

So I'm going to start off with a, which was root x i plus root y j. And I want to point out first, for

the function f of x is equal to square root of x, it is defined for all x greater than or equal to 0,

and it is differentiable for x greater than 0. I left out the T. There we go. So it is both defined



and differentiable when x is greater than 0. And now if I replace this with a y, the same thing is

true for y greater than or equal to 0, and y greater than 0. So we know the region where this

vector field is both defined and differentiable is when x is greater than 0 and y is greater than

0.

So we need the region-- let me draw it this way-- the region that is the first quadrant in the xy-

plane. And it's not including the x-axis or the y-axis. So it's this full shaded region. OK, that is

the region where it's defined and differentiable.

If I was going to write that precisely, I would say something like, all (x, y) with x greater than 0

and y greater than 0. Right? You need both. So it's exactly the (x, y) pairs with x positive and y

positive, and that's the region. And now the question is, is that region simply connected?

Well, the way we think about simply connectedness, from what you've seen in class, is you

want to show that if you take a closed curve that's contained in the region, that everything on

the interior of that closed curve is also in the region. And you notice that is in fact true for this

first quadrant. Any closed curve I draw that's in the region, all the points on the interior of the

curve are also in the region. So this domain where it's defined and differentiable is simply

connected.

So the first one, it is simply connected. All right. So that's part a.

Part b-- let me rewrite that one so we don't have to zoom over to the other side-- this was i

plus j divided by the function square root of 1 minus x squared minus y squared. Well, we

already know that the square root function is defined as long as the inside function is greater

than or equal to 0. Because it's in the denominator, we actually need this function 1 minus x

squared minus y squared to be greater than 0.

And that's also where it's going to be differentiable. The differentiable and the defined regions

are exactly the same, and they're both where 1 minus x squared minus y squared is greater

than 0. Right? The function is only defined as long as this quantity is greater than 0, and that's

exactly where it's differentiable as well.

And so what does this correspond to? Well, if you think about it, this is actually 1 is greater

than x squared plus y squared. And what are the points that look like this? Well, the x- and y-

points that satisfy this inequality are the x- and y-values that are on the interior of the unit

circle.



So if I draw a picture of that. Let me try and dot the unit circle. It's not containing the boundary,

but it's all the points that are on the interior of the unit circle. Every point here, when I take the

ordered pair (x, y) and it's on the interior of the unit circle, it satisfies this inequality. Those are

the only points that do that.

So this is the region that has this vector field both differentiable and defined. Right? Now, is

this region simply connected? It is, again for the same reason. Because if you take any closed

curve here, and you look at the interior of that closed curve, every point on the interior of that

closed curve is also in the region. Right? So it is also simply connected.

OK. So we had two so far that were simply connected. They were different-looking regions, but

ultimately they both had any closed curve, the interior of it was all contained in the region that

we were interested in.

So now the third one we have is somewhat similar-looking to part b, except that what's in the

square root is a little different. So now we can use exactly the same logic as what we did in

part b. And what we see is by the exact same logic that this vector field will be defined and

differentiable as long as x squared plus y squared minus 1 is positive. Because that's where

the square root function is differentiable, and that's also where 1 divided by the square root of

this thing is defined.

So they correspond to exactly the same regions. And that is x squared plus y squared greater

than 1. So if you think about that, what we did previously was we had x squared plus y

squared less than 1. So obviously if you want x squared plus y squared greater than 1, we're

taking all the (x, y) pairs that are outside the unit circle.

So again, we take the unit circle. We don't include the unit circle, because that's where x

squared plus y squared equals 1. And then we want all of the values outside of that region. So

this extends off to infinity. All of the values outside of that region.

Now, is this region simply connected? It is not. And the point is that while you do have some

curves, that if I take a closed curve, all of the points on the interior of that closed curve are in

the region, there are some curves for which that's not true.

For example, if I take the circle of radius-- what does that look like-- 2, 1 and 1/2, something

like that? If I look at all of the points on the interior of this curve-- I'm going to try and shade it

without getting rid of everything, so you can see still what's behind-- if I look at all those points,



without getting rid of everything, so you can see still what's behind-- if I look at all those points,

notice in particular, there are a bunch of points-- for instance, this one here, this one here, and

this one here-- all the ones inside the unit circle, are on the interior of this curve, but they're

not in the region. Right?

I'll shade it extra dark. All the points that are in here, that are inside the unit circle, are actually

still on the interior of this curve, but they're not in the region. And while there are some curves

for which everything on the inside is in the region, but there are some curves for which it's not

true, and that is what we know about not-simply connectedness. So we know this one is not

simply connected. OK.

So now we have one left. And the last one was i plus j, times natural log of x squared plus y

squared. So in this vector field, what I'm really interested in is the behavior of this function

natural log of x squared plus y squared. And the point I want to make is that natural log is

defined as long as the input value is positive, and it is differentiable everywhere it's defined.

And so this function will be both defined and differentiable as long as x squared plus y squared

is greater than 0.

So it's defined for all of these values, and natural log is differentiable everywhere it's defined.

So it's also differentiable for all of these values. And so we see that this vector field is defined

and differentiable everywhere except at one point.

And so let me draw-- this is a zooming in of that it's missing that point-- I want to make it extra

large. But it's really only missing one point. And what point is that? That point is the origin. So

everywhere except the origin. Maybe I should make it smaller, because maybe it looks like it's

missing a whole circle.

It's just missing the point. It's just missing the origin. But every other point on the xy-plane is a

place where this vector field is differentiable and defined. Right? So it's only missing that one

point, but that still gives us the fact that this region is not simply connected.

And again, it's exactly the same type of logic as the previous problem, that I could draw

curves, where every point on the interior is contained in the region. But there are curves that

also fail. Right? If I draw a curve that contains the origin, every point on the interior of this

region except the origin, is contained in the domain of interest, right? But because the interior

of the curve contains the origin, I know that this region is, in fact, not simply connected.

So if I look at all of R^2-- so if I look at all the (x, y)-values except x equals 0 and y equals 0--



except the origin-- I get a region that's not simply connected. And this one is maybe a little

tricky, so I'm going to say it one more time. OK?

So while there are some curves that we can see some portions of this region behave like

simply connected regions, when you're around the origin, any curve you take around the origin

is going to contain the origin on its interior. Right? But the origin is not in our domain of

interest. And therefore, there are curves that we can take that their interior contains a point

that's not in the region. And that's what it means to be not simply connected. OK?

So let me go back to the beginning and just remind you again real quickly what we did here.

We had these four vector fields. We wanted to do two things with all of them. We wanted to

first find the regions where they were defined and differentiable, and then determine if those

regions were simply connected.

And so we had two examples where the regions were simply connected. And then I gave you

two examples where the regions were not simply connected. And so hopefully this was

informative for how we can understand that vector fields are not necessarily always defined

everywhere, but also to understand what this simply connected region term actually means.

And I guess that's where I'll stop.


