Matrices 1. Matrix Algebra

Matrix algebra.

Previously we calculated the determinants of square arrays of numbers. Such arrays are important in mathematics and its applications; they are called matrices. In general, they need not be square, only rectangular.

A rectangular array of numbers having m rows and n columns is called an $m \times n$ matrix. The number in the i-th row and j-th column (where $1 \leq i \leq m, 1 \leq j \leq n$) is called the $\mathbf{i j}$-entry, and denoted $a_{i j}$; the matrix itself is denoted by A, or sometimes by $\left(a_{i j}\right)$.

Two matrices of the same size are equal if corresponding entries are equal.
Two special kinds of matrices are the row-vectors: the $1 \times n$ matrices $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$; and the column vectors: the $m \times 1$ matrices consisting of a column of m numbers.

From now on, row-vectors or column-vectors will be indicated by boldface small letters; when writing them by hand, put an arrow over the symbol.

Matrix operations

There are four basic operations which produce new matrices from old.

1. Scalar multiplication: Multiply each entry by $c: c A=\left(c a_{i j}\right)$
2. Matrix addition: Add the corresponding entries: $A+B=\left(a_{i j}+b_{i j}\right)$; the two matrices must have the same number of rows and the same number of columns.
3. Transposition: The transpose of the $m \times n$ matrix A is the $n \times m$ matrix obtained by making the rows of A the columns of the new matrix. Common notations for the transpose are A^{T} and A^{\prime}; using the first we can write its definition as $A^{T}=\left(a_{j i}\right)$.

If the matrix A is square, you can think of A^{T} as the matrix obtained by flipping A over around its main diagonal.

Example 1.1 Let $A=\left(\begin{array}{rr}2 & -3 \\ 0 & 1 \\ -1 & 2\end{array}\right), \quad B=\left(\begin{array}{rr}1 & 5 \\ -2 & 3 \\ -1 & 0\end{array}\right) . \quad$ Find $A+B, A^{T}, 2 A-3 B$.
Solution. $\quad A+B=\left(\begin{array}{rr}3 & 2 \\ -2 & 4 \\ -2 & 2\end{array}\right) ; \quad A^{T}=\left(\begin{array}{rrr}2 & 0 & -1 \\ -3 & 1 & 2\end{array}\right) ;$

$$
2 A+(-3 B)=\left(\begin{array}{rr}
4 & -6 \\
0 & 2 \\
-2 & 4
\end{array}\right)+\left(\begin{array}{rr}
-3 & -15 \\
6 & -9 \\
3 & 0
\end{array}\right)=\left(\begin{array}{rr}
1 & -21 \\
6 & -7 \\
1 & 4
\end{array}\right)
$$

4. Matrix multiplication This is the most important operation. Schematically, we have

$$
\begin{array}{cccc}
A & \cdot & B & = \\
m \times n & n \times p & & m \times p \\
& & & \\
& c_{i j} & = & \sum_{k=1}^{n} a_{i k} b_{k j}
\end{array}
$$

The essential points are:

1. For the multiplication to be defined, A must have as many columns as B has rows;
2. The $i j$-th entry of the product matrix C is the dot product of the i-th row of A with the j-th column of B.

Example 1.2 $\quad\left(\begin{array}{lll}2 & 1 & -1\end{array}\right)\left(\begin{array}{c}-1 \\ 4 \\ 2\end{array}\right)=(-2+4-2)=(0)$;

$$
\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)\left(\begin{array}{ll}
4 & 5
\end{array}\right)=\left(\begin{array}{rr}
4 & 5 \\
8 & 10 \\
-4 & -5
\end{array}\right) ; \quad\left(\begin{array}{rrr}
2 & 0 & 1 \\
1 & -1 & -2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & 1 \\
-1 & 0 & 2
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
3 & -2 & -6 \\
0 & 2 & 2
\end{array}\right)
$$

The two most important types of multiplication, for multivariable calculus and differential equations, are:

1. $A B$, where A and B are two square matrices of the same size - these can always be multiplied;
2. $A \mathbf{b}$, where A is a square $n \times n$ matrix, and \mathbf{b} is a column n-vector.

Laws and properties of matrix multiplication

$$
\text { M-1. } A(B+C)=A B+A C, \quad(A+B) C=A C+B C \quad \text { distributive laws }
$$

M-2. $(A B) C=A(B C) ; \quad(c A) B=c(A B) . \quad$ associative laws
In both cases, the matrices must have compatible dimensions.
M-3. Let $I_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) ; \quad$ then $A I=A$ and $I A=A$ for any 3×3 matrix.
I is called the identity matrix of order 3 . There is an analogously defined square identity matrix I_{n} of any order n, obeying the same multiplication laws.

M-4. In general, for two square $n \times n$ matrices A and $B, A B \neq B A$: matrix multiplication is not commutative. (There are a few important exceptions, but they are very special - for example, the equality $A I=I A$ where I is the identity matrix.)

M-5. For two square $n \times n$ matrices A and B, we have the determinant law:

$$
|A B|=|A||B|, \quad \text { also written } \quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

For 2×2 matrices, this can be verified by direct calculation, but this naive method is unsuitable for larger matrices; it's better to use some theory. We will simply assume it in these notes; we will also assume the other results above (of which only the associative law M-2 offers any difficulty in the proof).

M-6. A useful fact is this: matrix multiplication can be used to pick out a row or column of a given matrix: you multiply by a simple row or column vector to do this. Two examples
should give the idea:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right) \quad \text { the second column } \\
& \left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \quad \text { the first row }
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

