Problems: Exchanging the Order of Integration

Calculate $\int_{0}^{2} \int_{x}^{2} e^{-y^{2}} d y d x$.
Answer: As you may recall, the function $e^{-y^{2}}$ has no simple antiderivative. However, this double integral can be computed by reversing the order of integration.
The region R is the triangle with vertices at $(0,0),(0,2)$ and $(2,2)$ (sketch it!) Thus:

$$
\int_{x=0}^{2} \int_{y=x}^{2} e^{-y^{2}} d y d x=\int_{y=0}^{2} \int_{x=0}^{y} e^{-y^{2}} d x d y
$$

Inner: $\int_{x=0}^{y} e^{-y^{2}} d x=y e^{-y^{2}}$.
Outer: $\int_{y=0}^{2} y e-y^{2} d y=-\left.\frac{1}{2} e^{-y^{2}}\right|_{0} ^{2}=\frac{1}{2}\left(1-e^{-4}\right) \approx \frac{1}{2}$.
We're finding the area under a surface with maximum height 1 and minimum height $e^{-4} \approx$ 0.1 over a triangle of area 2 . This answer seems plausible.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

