Parametric Equations of Lines

1. Give parametric equations for x, y, z on the line through $(1,1,2)$ in a direction parallel to $\langle 2,-3,-1\rangle$.

Answer: We're given the basic data for a line of a point and a direction:

$$
\langle x, y, z\rangle=\langle 1+2 t, 1-3 t, 2-t\rangle \Leftrightarrow x=1+2 t, \quad y=1-3 t, \quad z=2-t
$$

2. Give parametric equations for the intersection of the planes $x+y+z=1$ and $x+2 y+3 z=2$.
Answer: We need to find the basic data.
A point on the intersection: we take $z=0$ and solve for x and $y \Rightarrow P_{0}=(0,1,0)$.
The line of intersection is perpendicular to both normals (to the planes), thus

$$
\mathbf{v}=\langle 1,1,1\rangle \times\langle 1,2,3\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right|=\langle 1,-2,1\rangle .
$$

We get parametric equations

$$
x=t, \quad y=1-2 t, \quad z=t .
$$

Remark: The parametrization is not unique. You might have described the same line using a different point P_{0} or a scaled version of \mathbf{v}.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

