Problems: Stokes' Theorem

1. Let $\mathbf{F}=x^{2} \mathbf{i}+x \mathbf{j}+z^{2} \mathbf{k}$ and let S be the graph of $z=x^{3}+x y^{2}+y^{4}$ over the unit disk. Use Stokes' Theorem to compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the boundary of S.
Answer: $\operatorname{curl} \mathbf{F}=\langle 0,0,1\rangle, \quad \mathbf{n} d S=\left\langle-z_{x},-z_{y}, 1\right\rangle d x d y \Rightarrow \operatorname{curlF} \cdot \mathbf{n} d S=d x d y$.
$\Rightarrow \iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S=\iint_{R} d x d y=$ area $R=\pi$.
Therefore, by Stokes' Theorem $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\pi$.

2. Which of the figures below shows a compatibly oriented surface and curve?

(a)

(b)

Answer: On surface (a), the curve C is oriented compatibly with the surface S shown. To make this easier to see, add more arrows indicating the orientation of C.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

