18.02 Problem Set 4, Part II Solutions

1. (a) The graphs of $x \rightarrow F_{2}(x, t)=\cos ^{2}(x-2 t)$ for $t=-1,0,1$ all have the same sinusoidal shape $f(u)=\cos ^{2}(u)$ shifted along the x -axis.
(b) This would represent the string displaced into the shape f and then this wave form traveling down the string over time with the 'wave speed' $=2$ (linear units/unit time). In physics this is called a traveling wave (not surprisingly).
The applet shows the same shape f translated along the y ($=$ time) axis that is, if you take a trace curve on the surface in any plane $\mathrm{y}=$ constant, you get one of the wave forms f shifted along the x -direction. (Note that the surface graph in 3D appears static, until one remembers that the y-axis represents time here; in the language of physics, this would be called a graph in the space-time domain.)
2. We have two surfaces defined by

$$
\begin{gathered}
z=f(x, y)=x^{2}-y^{2} \\
z=g(x, y)=2+(x-y)^{2} .
\end{gathered}
$$

a. Let (x, y, z) be in both surfaces. Then $z=f(x, y)$ and $z=g(x, y)$ which gives

$$
x^{2}-y^{2}=2+(x-y)^{2}
$$

or

$$
x^{2}-y^{2}=2+x^{2}-2 x y+y^{2}
$$

which reduces to

$$
-2 y^{2}+2 x y=2
$$

or

$$
x=y+\frac{1}{y}
$$

assuming $y \neq 0$.
When one does an intersection problem, it is possible to get extraneous solutions. Let's plug back in our formula for x and see if all the points we found do give rise to common points between surfaces f and g.

$$
x^{2}-y^{2}=\left(y+y^{-1}\right)^{2}-y^{2}=2+y^{-2}=2+\left(\left(y+y^{-1}\right)-y\right)^{2}=2+(x-y)^{2}
$$

So this checks out. To parameterize our curve, we choose $y=t$ and then get

$$
\begin{aligned}
& x=t+t^{-1} \\
& y=t \\
& z=2+t^{-2}
\end{aligned}
$$

(b) First we find a normal to the plane T_{1} tangent to surface f at $(2,1,3)$:

$$
\begin{aligned}
f_{x} & =2 x \\
f_{y} & =-2 y \\
f_{x}(2,1) & =4 \\
f_{y}(2,1) & =-2 .
\end{aligned}
$$

We may then use the formula for the normal

$$
\vec{n}_{1}=\left\langle f_{x}(2,1), f_{y}(2,1),-1\right\rangle=\langle 4,-2,-1\rangle .
$$

We find a normal to the plane T_{2} tangent to the surface g at $(2,1,3)$ by the same method:

$$
\begin{aligned}
g_{x} & =2(x-y) \\
g_{y} & =-2(x-y) \\
g_{x}(2,1) & =2 \\
g_{y}(2,1) & =-2 .
\end{aligned}
$$

The normal is

$$
\vec{n}_{2}=\left\langle g_{x}(2,1), g_{y}(2,1),-1\right\rangle=\langle 2,-2,-1\rangle .
$$

Then

$$
\measuredangle\left(T_{1}, T_{2}\right)=\measuredangle\left(\vec{n}_{1}, \vec{n}_{2}\right)=\theta
$$

where

$$
\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right| \cdot\left|\vec{n}_{2}\right|}=\frac{8+4+1}{\sqrt{21} \sqrt{9}}=\frac{13}{3 \sqrt{21}} .
$$

So

$$
\theta=\cos ^{-1}\left(\frac{13}{3 \sqrt{21}}\right) \approx .33 \mathrm{rad} \approx 19 \mathrm{deg} .
$$

(c) $\vec{r}(t)=\left\langle t+t^{-1}, t, 2+t^{-2}\right\rangle$. So

$$
\vec{r}^{\prime}(t)=\left\langle 1-t^{-2}, 1,-2 t^{-3}\right\rangle .
$$

The point $P_{0}=(2,1,3)=\vec{r}(t)$ for $t=1$. So the velocity vector of the parameterization as it passes through P_{0} is

$$
\vec{r}^{\prime}(1)=\langle 0,1,-2\rangle .
$$

We think of this vector as being based at point P_{0}, pointing along the curve \vec{r}. Given this, we know its initial point lies in the planes T_{1}, T_{2}. What remains is to prove that the vector is parallel to both planes. We check this using our normal vectors:

$$
\begin{aligned}
\vec{n}_{1} \cdot \vec{r}^{\prime}(1) & =\langle 4,-2,-1\rangle \cdot\langle 0,1,-2\rangle=0 . \\
\vec{n}_{2} \cdot \vec{r}^{\prime}(1) & =\langle 2,-2,-1\rangle \cdot\langle 0,1,-2\rangle=0 .
\end{aligned}
$$

3. The contour plot is a set of circles centered at the origin, with the f-level decreasing as the radius increases. The parabola C_{2} is tangent to the level curve $f=\frac{16}{13}$ at the point $\left(0, \frac{3}{2}\right)$, and to the level curve $f=\frac{16}{9}$ at the points $\left(\pm 1, \frac{1}{2}\right)$.
b) $x=t, \quad y=1.5-t^{2}, \quad z=f(x(t), y(t))=\frac{4}{1+t^{2}+\left(1.5-t^{2}\right)^{2}}$.
d) Computing $\frac{d z}{d t}=\frac{d}{d t}\left(\frac{4}{1+t^{2}+\left(1.5-t^{2}\right)^{2}}\right)$ and setting the result equal to zero gives $4 t\left(t^{2}-1\right)=0$. Critical points are thus at $t=0$ and $t= \pm 1$, which gives the points $\left(0, \frac{3}{2}, \frac{16}{13}\right)$, which is a local min, and $\left(\pm 1, \frac{1}{2}, \frac{16}{9}\right)$, which are local max's on the surface S.
e) We're looking for the max/min's of distance ${ }^{2}=t^{2}+\left(\frac{3}{2}-t^{2}\right)^{2}$. Differentiating and setting equal to zero gives the same equation as in part(d): $4 t\left(t^{2}-1\right)=0$.
Geometrically, the reason that you get the same results is that the surface given by $z=f(x, y)$ decreases symmetrically as (x, y) moves away from the origin. The point $\left(0, \frac{3}{2}\right)$ gives a local min on f, since its distance from O is a local max; and the points ($\pm 1, \frac{1}{2}$) give local max's on f, since their distance from O is a local min.
This is confirmed by surface and curve graphs, and also by the level curve picture.
4. We are considering the sum S, writable as the function

$$
f(x, y, z)=x^{3}+y^{3}+z^{3}
$$

on the set of (x, y, z) satisfying $x^{2}+y^{2}+z^{2}=27 ; x, y, z \geq 0$. Geometrically this is the part of a sphere lying in the first octant. Algebraically, we see that we only need to work with two variables; the variable z can be solved for in terms of the other two.

$$
z=\sqrt{27-x^{2}-y^{2}}
$$

Here we limit x, y to a quadrant Q of a disc: $x, y \geq 0, x^{2}+y^{2} \leq 27$. We may therefore write our function f in terms of just x, y :

$$
f(x, y)=x^{3}+y^{3}+\left(27-x^{2}-y^{2}\right)^{3 / 2} .
$$

Partial derivatives are

$$
f_{x}(x, y)=3 x^{2}+\frac{3}{2}(-2 x) \sqrt{27-x^{2}-y^{2}}
$$

and

$$
f_{y}(x, y)=3 y^{2}+\frac{3}{2}(-2 y) \sqrt{27-x^{2}-y^{2}}
$$

Critical points occur when $\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\langle 0,0\rangle$. Looking at the equations we see

$$
x=0, \quad \text { or } x=\sqrt{27-x^{2}-y^{2}}
$$

and

$$
y=0, \quad \text { or } y=\sqrt{27-x^{2}-y^{2}} .
$$

We have two independent choices; this gives four possibilities, which work out to $(0,0),(0, \sqrt{27 / 2}),(\sqrt{27 / 2}, 0),(3,3)$.
$2^{\text {nd }}$ derivative test:

$$
\begin{aligned}
& f_{x x}=6 x-3\left(27-x^{2}-y^{2}\right)^{\frac{1}{2}}+3 x^{2}\left(27-x^{2}-y^{2}\right)^{-\frac{1}{2}} \\
& f_{x y}=f_{y x}=3 x y\left(27-x^{2}-y^{2}\right)^{-\frac{1}{2}} \\
& f_{y y}=6 y-3\left(27-x^{2}-y^{2}\right)^{\frac{1}{2}}+3 y^{2}\left(27-x^{2}-y^{2}\right)^{-\frac{1}{2}}
\end{aligned}
$$

At $(0,0)$;

$$
A=f_{x x}(0,0)=-9 \sqrt{3}, B=f_{x y}(0,0)=0, C=f_{y y}(0,0)=-9 \sqrt{3} .
$$

Therefore, $A C-B^{2}=243>0$ and $A<0$, which implies the critical point is a relative maximum. $S=81 \sqrt{3}$.

At $\left(0,3 \sqrt{\frac{3}{2}}\right)$ and $\left(3 \sqrt{\frac{3}{2}}, 0\right)$.
We compute $A=18 \sqrt{3 / 2}, B=0, C=-9 \sqrt{3 / 2}$. Therefore, $A C-B^{2}<-$, which means we have a saddle points at $\left(3 \sqrt{\frac{3}{2}}, 0,3 \sqrt{\frac{3}{2}}\right)$ and $\left(0,3 \sqrt{\frac{3}{2}}, 3 \sqrt{\frac{3}{2}}\right)$, neither max nor min.
At $(3,3)$ we compute $A=18=C$ and $B=9 \Rightarrow A C-B^{2}=243$, since $A>0$ this is a minimum $\Rightarrow(3,3,3)$ is a relative minimum. $S=3 \cdot 3^{3}=81$.
Boundary test: $x^{2}+y^{2}=27$ is the boundary of the region where f is defined. Parametrize by $x=3 \sqrt{3} \cos t$, $y=3 \sqrt{3} \sin t$, so $f(3 \sqrt{3} \cos t, 3 \sqrt{3} \sin t)=$ $27\left(\cos ^{3} t+\sin ^{3} t\right)\left(\right.$ since $\left.z=0=\left(27-x^{2}-y^{2}\right)^{1 / 2}\right) . \max / \min$ by 1 -variable calculus: $\frac{d}{d t} 27\left(\cos ^{3} t+\sin ^{3} t\right)=81 \cos t \sin t(\sin t-\cos t)$.
Critical points: $t=0, \frac{\pi}{4}, \frac{\pi}{2} \ldots$.
Observe that the derivative changes its sign from $+\rightarrow-$ at $t=0$, from $-\rightarrow+$ at $t=\frac{\pi}{4}$, and from $+\rightarrow-$ at $t=\frac{\pi}{2}$.
We get relative maxima at $t=0, x=3 \sqrt{3}, y=0, z=0$, and $t=\frac{\pi}{2}, x=0, y=3 \sqrt{3}, z=0$. For $t=\frac{\pi}{4}$ we have a relative minimum with $x=3 \sqrt{6} / 2, y=3 \sqrt{6} / 2, z=0$. Note that other critical values of t give the same or negative values, so these suffice. The value at the relative maxima on the boundary is $S=81 \sqrt{3}$, and for the relative minimum it is $S=81 \sqrt{\frac{3}{2}}$.
Conclusion: Largest $S=81 \sqrt{3}$: just one number greater than 0 , equal to $3 \sqrt{3}$.
Smallest $S=81$: three equal numbers, equal to 3 .
5.(a) We want the critical points of $f(\alpha, \beta)=\cos \alpha \cos \beta \cos (\alpha+\beta)$, where α and β are in the range $\left[0, \frac{\pi}{2}\right]$. We take the first partials of f and set them equal to zero.
$f_{\alpha}(\alpha, \beta)=-\sin \alpha \cos \beta \cos (\alpha+\beta)-\cos \alpha \cos \beta \sin (\alpha+\beta)=0 \quad$ and
$f_{\beta}(\alpha, \beta)=-\cos \alpha \sin \beta \cos (\alpha+\beta)-\cos \alpha \cos \beta \sin (\alpha+\beta)=0$.
Using the sine addition formula $\sin (a+b)=\sin a \cos b+\cos a \sin b$ we get
$f_{\alpha}(\alpha, \beta)=-\cos \beta \sin (2 \alpha+\beta)=0 \quad$ and
$f_{\beta}(\alpha, \beta)=-\cos \alpha \sin (\alpha+2 \beta)=0$.
One solution is $\alpha=\beta=\pi / 2$, but this gives $f=0$, which is not the largest negative component. $\alpha=\pi / 2$ and $\beta \neq \pi / 2$ gives a contradiction, as does $\alpha \neq \pi / 2$ and $\beta=\pi / 2$ (show this). Then $\alpha \neq \pi / 2$ and $\beta \neq \pi / 2$ gives $\sin (\alpha+2 \beta)=0$ and $\sin (2 \alpha+\beta)=0$, which implies that
$\alpha+2 \beta=\pi \quad$ and $\quad 2 \alpha+\beta=\pi . \quad$ Solving, we get $\quad \alpha=\beta=\frac{\pi}{3}$.
Second-derivative test to show that this is in fact a minimum (i.e., most negative) - optional.
(b) $f\left(\frac{\pi}{3}, \frac{\pi}{3}\right)=-\frac{1}{8}$. Since the length of the wind vector $\mathbf{w}=\langle 1,0\rangle$ is 1 , this means that one can capture at most $\frac{1}{8}$ or 12.5% of the force of the wind for the purpose of tacking into the wind.

Suggested Experiments. When you move from $(0,0)$ you will observe

direction	f_{x}	f_{y}
E	decreases	stays zero
NE	decreases	increases
N	stays zero	increases
NW	increases	increases
W	increases	stays zero
SW	increases	decreases
S	stays zero	decreases
SE	decreases	decreases

Hiking W or E you descend more and more steeply.
Hiking N or S you ascend more and more steeply.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

