Vector derivatives

1. Let $\mathbf{r}(t)$ be a vector function. Prove by using components that

$$
\frac{d \mathbf{r}}{d t}=\mathbf{0} \Rightarrow \mathbf{r}(t)=\mathbf{K}, \text { where } \mathbf{K} \text { is a constant vector. }
$$

Answer: In two dimensions $\mathbf{r}(t)=\langle x(t), y(t)\rangle, \mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$.
Therefore,

$$
\begin{aligned}
\mathbf{r}^{\prime}(t)=0 & \Rightarrow x^{\prime}(t)=0 \text { and } y^{\prime}(t)=0 \\
& \Rightarrow x(t)=k_{1} \text { and } y(t)=k_{2} \\
& \Rightarrow \mathbf{r}(t)=\left\langle k_{1}, k_{2}\right\rangle, \text { where } k_{1} \text { and } k_{2} \text { are contants. }
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

