Chain Rule

1. The temperature on a hot surface is given by

$$
T=100 \mathrm{e}^{-\left(x^{2}+y^{2}\right)} .
$$

A bug follows the trajectory $\mathbf{r}(t)=\langle t \cos (2 t), t \sin (2 t)\rangle$.
a) What is the rate that temperature is changing as the bug moves?
b) Draw the level curves of T and sketch the bug's trajectory.

Answer: a) The chain rule says

$$
\begin{aligned}
\frac{d T}{d t} & =\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t} \\
& =-200 x \mathrm{e}^{-\left(x^{2}+y^{2}\right)}(\cos (2 t)-2 t \sin (2 t))-200 y \mathrm{e}^{-\left(x^{2}+y^{2}\right)}(\sin (2 t)+2 t \cos (2 t))
\end{aligned}
$$

You could stop here, or substitute $x=t \cos (2 t)$ and $y=t \sin (2 t)$. After simplification you get

$$
\frac{d T}{d t}=-200 t \mathrm{e}^{-t^{2}}
$$

b) The level curves of T are the curves $x^{2}+y^{2}=$ constant, i.e., circles. The bug moves in a spiral.

2. Suppose $w=f(x, y)$ and $x=t^{2}, y=t^{3}$. Suppose also that at $(x, y)=(1,1)$ we have $\frac{\partial w}{\partial x}=3$ and $\frac{\partial w}{\partial y}=1$. Compute $\frac{d w}{d t}$ at $t=1$.

Answer: At $t=1$ we have $(x, y)=(1,1),\left.\frac{d x}{d t}\right|_{1}=2,\left.\frac{d y}{d t}\right|_{1}=3$. Therefore the chain rule says

$$
\left.\frac{d w}{d t}\right|_{1}=\left.\left.\frac{\partial f}{\partial x}\right|_{(1,1)} \frac{d x}{d t}\right|_{1}+\left.\left.\frac{\partial f}{\partial y}\right|_{(1,1)} \frac{d y}{d t}\right|_{1}=3(2)+1(3)=9 .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

