Product rule for vector derivatives

1. If $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$ are two parametric curves show the product rule for derivatives holds for the dot product.

Answer: This will follow from the usual product rule in single variable calculus. Lets assume the curves are in the plane. The proof would be exactly the same for curves in space. We want to prove that

$$
\frac{d\left(\mathbf{r}_{1} \cdot \mathbf{r}_{2}\right)}{d t}=\mathbf{r}_{1}^{\prime} \cdot \mathbf{r}_{2}+r_{1} \cdot \mathbf{r}_{2}^{\prime}
$$

Let $\mathbf{r}_{1}=\left\langle x_{1}, y_{1}\right\rangle \quad$ and $\quad \mathbf{r}_{2}=\left\langle x_{2}, y_{2}\right\rangle$. We have,

$$
\mathbf{r}_{1} \cdot \mathbf{r}_{2}=x_{1} x_{2}+y_{1} y_{2} .
$$

Taking derivatives using the product rule from single variable calculus, we get

$$
\begin{aligned}
\frac{d\left(\mathbf{r}_{1} \cdot \mathbf{r}_{2}\right)}{d t} & =\frac{d\left(x_{1} x_{2}+y_{1} y_{2}\right)}{d t} \\
& =x_{1}^{\prime} x_{2}+x_{1} x_{2}^{\prime}+y_{1}^{\prime} y_{2}+y_{1} y_{2}^{\prime} \\
& =\left(x_{1}^{\prime} x_{2}+y_{1}^{\prime} y_{2}\right)+\left(x_{1} x_{2}^{\prime}+y_{1} y_{2}^{\prime}\right) \\
& =\left\langle x_{1}^{\prime}, y_{1}^{\prime}\right\rangle \cdot\left\langle x_{2}, y_{2}\right\rangle+\left\langle x_{1}, y_{1}\right\rangle \cdot\left\langle x_{2}^{\prime}, y_{2}^{\prime}\right\rangle \\
& =\mathbf{r}_{1}^{\prime} \cdot \mathbf{r}_{2}+\mathbf{r}_{1} \cdot \mathbf{r}_{2}^{\prime} .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

