Verify Green's Theorem in Normal Form

Verify that $\oint_{C} M d y-N d x=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A$ when $\mathbf{F}=x \widehat{\mathbf{i}}+x \widehat{\mathbf{j}}$ and C is the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$.

Answer:

Right hand side: Here $M=N=x$, so $\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A=\iint_{R} 1 d A=1$.
Left hand side: $\oint_{C} M d y-N d x=\oint_{C} x d y-x d x$. We evaluate this line integral in four parts.

- $(0,0)$ to $(1,0)$.

$$
\int_{x=0}^{x=1} x \cdot 0-x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
$$

- $(1,0)$ to $(1,1)$.

$$
\int_{y=0}^{y=1} 1 d y-1 \cdot 0=1
$$

- $(1,1)$ to $(0,1)$.

$$
\int_{x=1}^{x=0} x \cdot 0-x d x=-\frac{1}{2} .
$$

- $(0,1)$ to $(0,0)$.

$$
\int_{y=1}^{y=0} 0 d y-0 \cdot 0=0 .
$$

Since the sum of the line integrals along the components of C is $1, \oint_{C} x d y-x d x=1$. This confirms that the normal form of Green's Theorem is true in this example.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

