18.02 Problem Set 5, Part II Solutions

Problem $1 R=f(r, w)=k w r^{-4}(k$ constant $)$
(a) $d R=f_{r} d r+f_{w} d w=k\left(w\left(-4 r^{-5}\right) d r+r^{-4} d w\right)$.
(b) $\frac{d R}{R}=-4 \frac{d r}{r}+\frac{d w}{w}$.
(c) $\frac{d R}{R}$ is more sensitive to $\frac{d r}{r}=$ relative change in r. Opposite signs in $\frac{d r}{r}$, $\frac{d w}{w}$ (or in $d r$ and $d w$, since $r, w>0$) will cause errors to add.

Problem $2 \frac{D f}{D t}=\frac{d}{d t} f(\mathbf{r}(t), t)=\frac{d}{d t} f(x(t), y(t), z(t), t)=$ $\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}+\frac{\partial f}{\partial t} \frac{d t}{d t}=\mathbf{r}^{\prime}(t) \cdot \nabla f(\mathbf{r}(t))+\frac{\partial f}{\partial t}=\mathbf{v} \cdot \nabla f+\frac{\partial f}{\partial t} \quad$ using $\mathbf{v}=\mathbf{r}^{\prime}(t)$

Problem $3 \frac{D \rho}{D t}=\frac{\partial \rho}{\partial t}+\mathbf{v} \cdot \nabla \rho$
(a) If $\rho=\rho(t)$ only, then $\nabla \rho=\left\langle\rho_{x}, \rho_{y}, \rho_{z}\right\rangle=\mathbf{0}$. Thus $\frac{D \rho}{D t}=0$ if and only if $\frac{\partial \rho}{\partial t}=0$.
b) If $\frac{\partial \rho}{\partial t}=0$, then $\frac{D \rho}{D t}=0$ if and only if $\mathbf{v} \cdot \nabla \rho=0$. So the condition for stratified flow is that the velocity vectors of the flow are orthogonal to the density gradients, or, equivalently, tangent to the surfaces of constant density.
c) If $\rho=\rho(y)$ only, then $\nabla \rho=\left\langle 0, \rho_{y}\right\rangle$, so that the gradient of the density is always parallel to \mathbf{j}. Therefore, by the result of part(b), the streamlines, which follow the velocity vectors \mathbf{v}, are always horizontal. The flow is thus layered by density, which is consistent with the meaning of the word stratified.

Problem 4. (a) and (e) - see picture:

(b) We compute

$$
\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\langle-1,-4\rangle .
$$

(c) The level curve for $f=0$ is given by

$$
x+4 y=4 .
$$

We are looking for a point (x, y) that lies on the line that passes through the origin in gradient direction, i.e.,

$$
\langle x, y\rangle=\langle 0,0\rangle+s\langle-1,-4\rangle .
$$

Thus $x=-s$ and $y=-4 s=4 x$. Plugging $y=4 x$ into the level curve for $f=0$ gives

$$
x+16 x=4,
$$

or $x=4 / 17$ and $y=16 / 17$.
(d) The directional derivative is given by

$$
\nabla f(x, y) \cdot \frac{\mathbf{w}}{|\mathbf{w}|}=\langle-1,-4\rangle \cdot \frac{\langle-2,-1\rangle}{\sqrt{5}}=\frac{6}{\sqrt{5}} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

