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Triple Integrals 

1. Find the moment of inertia of the tetrahedron shown about the z-axis. Assume the 
tetrahedron has density 1. 
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Figure 1: The tetrahedron bounded by x + y + z = 1 and the coordinate planes. 

Answer: To compute the moment of inertia, we integrate distance squared from the z-axis 
times mass:    

2(x + y 2) · 1 dV. 
D 

Using cylindrical coordinates about the axis of rotation would give us an “easy” integrand 
2(r) with complicated limits. The integrand x + y2 is not particularly intimidating, so we 

instead use rectangular coordinates. Integrating first with respect to y or x is preferable; 
2(x + y2)(1 − x − y) is a somewhat more intimidating integrand. 

To find our limits of integration, we let y go from 0 to the slanted plane x + y + z = 1. The 
x and z coordinates are in R, the projection of D to the xz-plane which is bounded by the 
x and z axes and the line x + z = 1.  1  1−z  1−x−z 
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2. Find the mass of a cylinder centered on the z-axis which has height h, radius a and 
density δ = x2 + y2 . 
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Figure 2: Cylinder. 


 

Answer: To find the mass we integrate the product of density and volume: 

Mass =
   

δ dV =
   

r 2 dV. 
D D 

Naturally, we’ll use cylindrical coordinates in this problem. The limits on z run from 0 to 
h. The x and y coordinates lie in a disk of radius a, so 0 ≤ r ≤ a and 0 < θ ≤ 2π. 
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r 3 dz dr dθ. 
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