Triple Integrals

1. Find the moment of inertia of the tetrahedron shown about the z-axis. Assume the tetrahedron has density 1 .

Figure 1: The tetrahedron bounded by $x+y+z=1$ and the coordinate planes.
Answer: To compute the moment of inertia, we integrate distance squared from the z-axis times mass:

$$
\iiint_{D}\left(x^{2}+y^{2}\right) \cdot 1 d V
$$

Using cylindrical coordinates about the axis of rotation would give us an "easy" integrand (r) with complicated limits. The integrand $x^{2}+y^{2}$ is not particularly intimidating, so we instead use rectangular coordinates. Integrating first with respect to y or x is preferable; $\left(x^{2}+y^{2}\right)(1-x-y)$ is a somewhat more intimidating integrand.
To find our limits of integration, we let y go from 0 to the slanted plane $x+y+z=1$. The x and z coordinates are in R, the projection of D to the $x z$-plane which is bounded by the x and z axes and the line $x+z=1$.

$$
\text { Moment of Inertia }=\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-x-z}\left(x^{2}+y^{2}\right) d y d x d z
$$

Inner: $\left.\left(x^{2} y+\frac{1}{3} y^{3}\right)\right|_{0} ^{1-x-z}=x^{2}-x^{3}-x^{2} z+\frac{1}{3}(1-x-z)^{3}$.
Middle:

$$
\begin{aligned}
\int_{0}^{1-z} x^{2}(1-z)-x^{3}+\frac{1}{3}(1-x-z)^{3} d x & =\frac{1}{3} x^{3}(1-z)-\frac{1}{4} x^{4}-\left.\frac{1}{12}(1-x-z)^{4}\right|_{0} ^{1-z} \\
& =\frac{1}{3}(1-z)^{4}-\frac{1}{4}(1-z)^{4}+\frac{1}{12}(1-z)^{4} \\
& =\frac{1}{6}(1-z)^{4}
\end{aligned}
$$

Outer: $\left.\frac{1}{30}(1-z)^{5}\right|_{0} ^{1}=\frac{1}{30}$.
2. Find the mass of a cylinder centered on the z-axis which has height h, radius a and density $\delta=x^{2}+y^{2}$.

Figure 2: Cylinder.

Answer: To find the mass we integrate the product of density and volume:

$$
\text { Mass }=\iiint_{D} \delta d V=\iiint_{D} r^{2} d V
$$

Naturally, we'll use cylindrical coordinates in this problem. The limits on z run from 0 to h. The x and y coordinates lie in a disk of radius a, so $0 \leq r \leq a$ and $0<\theta \leq 2 \pi$.

$$
\text { Mass }=\iiint_{D} r^{2} d V=\int_{0}^{2 \pi} \int_{0}^{a} \int_{0}^{h} r^{2} d z r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{a} \int_{0}^{h} r^{3} d z d r d \theta
$$

Inner integral: $\left.r^{3} z\right|_{0} ^{h}=h r^{3}$.
Middle integral: $\int_{0}^{a} h r^{3} d r=\frac{h a^{4}}{4}$.
Outer integral: $2 \pi \frac{h a^{4}}{4}=\frac{\pi h a^{4}}{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

