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PROFESSOR: Hi, welcome back to recitation. I have a nice exercise here for you that tests your knowledge of

triple integration. So in particular, I've got for you a cylinder. And my cylinder has height h and

it has radius b. And this is the kind of cylinder I like. It's a constant density cylinder. So its

density is just 1 everywhere. So what I'd like you to do is, for the cylinder, I'd like you to

compute its moment of inertia around its central axis. So why don't you pause the video, have

a go at that, come back, and you can check your work against mine.

Hopefully you had some luck working on this problem. Let's talk about it. So the first thing to

notice is that there aren't any coordinates in this problem. I've given you a cylinder but it's up

to you to choose coordinates, a way to arrange your cylinder in space or a way to arrange

your coordinates with respect to your cylinder.

So a convenient thing to do in this case is going to be-- you know, we're working with respect

to the central axis of the cylinder. So let's make that one of our axes. So in particular, why

don't we make it our z-axis. That seems like a natural sort of thing to do. So let me try and

draw a little picture here. So we've got our cylinder. And there it is with our three coordinate

axes. I guess it's got radius b and it's got height h.

Now we've arranged it, now we have coordinates, so now we want to see what it is we're trying

to do with it. So we're trying to compute a moment of inertia. So we have to remember what a

moment of inertia means. So let me think. So a moment of inertia, when you have a solid-- so

your moment of inertia I with respect to an axis is what you get when you take the triple

integral--

so let's say your solid is D. Your solid D. So you take D. So you take a triple integral over D

and you're integrating r squared with respect to the element of mass. OK. So r squared here,

this is the distance from the axis around which you're computing the moment of inertia. And in

our case, so in any case, this little moment of mass is-- sorry, little element of mass-- is density

times a little element of volume. So we can also write this as the triple integral over our region

of r squared times delta times dV.

OK, so this is what this is in general. So now let's think about it in our case. Well, in our case,

we've cleverly chosen our central axis to be the z-axis. So this r is just the distance from the z-

axis. This I was kind enough to give you a constant-density cylinder, so this delta is just 1.

That's going to be easy. And then we have this triple integral over the whole cylinder. So we



want a triple integral over the whole cylinder of some integrand that involves r.

So a natural thing to do in this situation-- the natural sort of thing to do when you have a

cylinder or anything that's rotationally symmetric, and you have an integrand that behaves

nicely with respect to rotation, that can be written easily in terms of r, or r and theta-- is to do

cylindrical coordinates. Is to think of cylindrical coordinates. So in our case that means we just

need to figure out-- at this point-- we need to figure out how do we integrate over the cylinder

in cylindrical coordinates?

So let's do it. So in our case-- so it doesn't matter too much what order we do things in. So we

need dV. We need to write that in terms of the cylindrical coordinates. So that's dz, dr, and d

theta. And so we know that dV is r dz dr d theta. You might want some other order there, but

that's a good, nice order. It usually is the simplest order to consider. So this moment of inertia,

in our case, is going to be this triple integral.

OK, so we said r squared delta, r squared times density, density is 1. So that's just r squared.

And r, the distance to the axis is r, the distance to the z-axis. So that's just r squared times r dz

dr d theta. So this is the integral we're trying to compute, but we need bounds, right? It's a

triple integral, it's a definite integral, we need to figure out what the bounds are to evaluate it

as an iterated integral.

So let's go look at this little picture we drew. So I guess I didn't discuss this, but I made a

choice just to put the bottom of the cylinder in the xy-plane and the top at height h. It's not

going to matter. If you had made some other choice, it would work out fine. So that means the

z is going from 0 to h, regardless of r and theta. So z is going from 0 to h. That's nice, let's put

that over here. z is the inside one. It's going from 0 to h. Then r is next. Well, this is also-- you

know, cylinders are great for cylindrical coordinates. Shocker, right, given the name. I know.

So r is going from 0 to what's the radius? Our radius was b. So r goes from 0 to b, and that's

true regardless of theta. So back over here, so we have r going from 0 to b and theta is just

going from 0 to 2*pi; we're doing a full rotation all the way around the cylinder. So this is what

our moment of inertia is, and now we just have to compute it.

So we've got our inner integral here is with respect to z. So the inner integral is the integral

from 0 to h of r cubed dz. And r cubed doesn't have any z's in it. Fabulous. So that's just going

to be r cubed z, where z goes from 0 to h. So that's h r cubed minus 0. So h r cubed. All right.

So that's the inner.



Now let's look at the middle integral. So this is going to be the integral as-- that's our r integral.

So that's going from 0 to b. And what are we integrating? We're integrating the inner integral.

So the inner integral was h r cubed. So we're integrating h r cubed dr from 0 to b. All right, this

is not quite as easy. But h as a constant, we're integrating r cubed. I've done worse. You've

done worse. So that's going to be h r to the fourth over 4 between 0 and b. So OK. So that's h

b to the fourth over 4 minus h times 0 to the fourth over 4. So the second term's 0. So this is

just equal to h times b to the fourth over 4.

And finally, we have our outermost integral. So what was that integral? Well, that was the

integral from 0 to 2*pi d theta of the second integral. So this is of the middle integral. So it's the

integral from 0 to 2*pi d theta of the middle integral which was h b to the fourth over 4. And this

is just a constant again. Great. So this is h b to the fourth over 4 times 2*pi. So what does that

work out to? That's h b to the fourth pi over 2.

All right. So there you go. Now if you wanted to, you could also rewrite this a little bit, because

you could note that this is pi h b squared, that's your volume of your cylinder. And in fact, it's

not just your volume, it's your mass of your cylinder, because it had constant density 1. So you

also could've written this as mass times a squared over 2. Sorry. b squared over 2. I don't

know where a came from. Mass times b squared. So you have some other options for how

you could write this answer by involving the volume and mass and so on.

So let's just recap very quickly why we did what we did. We had a cylinder. And so really, given

a cylinder, it was a natural choice to look at cylindrical coordinates. And once we had

cylindrical coordinates, everything was easy. So we just took our general form of the moment

of inertia, took the region in question, in cylindrical coordinates it was very, very easy to

describe this entire region. And then our integrals were pretty easy to compute after we made

that choice. After we made that choice they were nice and easy to compute. So I'll stop there.


