Problems: Geometric Approach to Line Integrals

1. Let $\mathbf{F}(x,y) = e^x y \mathbf{i}$ describe a force field. Show without computation that the work integral along the line segment from (2,0) to (2,4) is 0.

<u>Answer:</u> Since the vector $d\mathbf{r}$ points in the **j** direction we have $\mathbf{F} \cdot d\mathbf{r} = 0$. Therefore $\int \mathbf{F} \cdot d\mathbf{r} = 0$.

2. Let C be the curve $g(x,y) = x^3y + xy^3 = 5$. Find $\int_C \mathbf{\nabla} g \cdot d\mathbf{r}$.

<u>Answer:</u> Since C is a level curve for G we know $\nabla g \cdot d\mathbf{r} = 0$. Therefore, $\int_C \nabla g \cdot d\mathbf{r} = 0$.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.