Problems: Geometric Approach to Line Integrals

1. Let $\mathbf{F}(x, y)=e^{x} y \mathbf{i}$ describe a force field. Show without computation that the work integral along the line segment from $(2,0)$ to $(2,4)$ is 0 .
Answer: Since the vector $d \mathbf{r}$ points in the \mathbf{j} direction we have $\mathbf{F} \cdot d \mathbf{r}=0$. Therefore $\int \mathbf{F} \cdot d \mathbf{r}=0$.
2. Let C be the curve $g(x, y)=x^{3} y+x y^{3}=5$. Find $\int_{C} \nabla g \cdot d \mathbf{r}$.

Answer: Since C is a level curve for G we know $\nabla g \cdot d \mathbf{r}=0$. Therefore, $\int_{C} \nabla g \cdot d \mathbf{r}=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

