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DAVID JORDAN: Hello, and welcome back to recitation. So the problem that I want to work with you 
now is to compute some integrals, but we want to compute them in the presence of a density function.  

 

So the region that we're considering is very simple. It's just the unit square. So we have the origin here, 
we have the line x equals 1, we have the line y equals 1, and we just want to compute in this region. And 
so we want to use this density function to find various sort of physical characteristics of this region.  

 

So first, we want to find its mass, and so we are going to need to recall how you get mass from density. 
We want to find the center of mass. That is, where is the point on which we could balance this if we cut 
it out? If we tried to balance it on our fingers, where is the average mass concentrated? We want to find 
the moment of inertia about the origin, and we want to find the moment of inertia about the x-axis. So 
we're going to have to remember our formulas for moments of inertia.  

 

So why don't you pause the video and work on this for a little bit. Check back with me and I'll show you 
how I solved it.  

 

Hi. Welcome back. Why don't we start by finding the mass.  

 

So the mass is the most straightforward of these, and I find it helpful to use the language of differentials. 
So what I want us to do is I want us to take a little square here, and this little square has area dA. OK? 
And what we want to do is we want to sum up the masses of all the little squares dA here. So what we 
want to know is what is the little bit of mass dM which corresponds to this little bit of area dA.  

 

And more or less by definition, this is delta dA. So delta is the ratio of area to mass. And so this little 
contribution of mass is just delta times the little contribution of area. OK? Now, once we write it this 
way, then our total mass for the entire square is just the integral over the region of all the little 
contributions of dM.  

 



And so in particular, this is just the integral from x equals 0 to 1, y equals 0 to 1. We have xy-- that's our 
density-- and then we have dy dx. OK. And this is an integral which we can just compute. So why don't 
we compute this one all the way through and see what we get.  

 

OK. So we have integral x equals 0 to 1. So we have xy, and we need to integrate that in y. So we have xy 
squared over 2. And then y ranges from 1 to 0, dx. So this is the integral from x equals 0 to 1 of x over 2, 
dx. And this is just x squared over 4 from 1 to 0. This is just 1/4. So that tells us that the total mass of this 
unit square is 1/4.  

 

OK. So now, we need to do similar, we have a similar challenge for the other physical quantities. We just 
need to figure out what is the appropriate differential quantity, and then we just need to integrate that. 
For b, we need to compute the center of mass.  

 

So remember that the center of mass involves finding the average x-coordinate and the average y-
coordinate. And I wanted to remind you what the formula is for the center of mass, and remind you how 
I remind myself of it.  

 

So in the formula for the center of mass, we need to take the average of x times dM divided by the 
integral of dM. So this is our formula for the center of mass. And I just wanted to say that the way that I 
remember this is by thinking about seesaws.  

 

So if you think about it-- and if we were not doing multiple variables but a single variable-- if I had a 
seesaw, and I had some weights. So I had m1 and m2 and m3 and m4-- I had some weights-- and these 
were at positions x1 and x2 and x3 and x4. Well, the fact that the scale would be balanced would be to 
say that this point x here, where the fulcrum is located, is exactly the weighted average of these points. 
That's what's going to guarantee that there's the same amount of torque pushing this way and this way. 
So if we were in one variable and we just had some discrete weights, then we would want to take the 
average of all of these positions, and we would want to weight it with the masses. So we would want to 
take the sum of xi mi and divide by the sum of mi. This would be the average coordinates in this kind of 
toy example.  

 

And now if you look at the formula for the center of mass, it's really the same thing, isn't it? Because 
integrals are just a continuous version of the sum. We have x as a function instead of xi-- as a list. And 
the mi's are just the little infinitesimal dM's here. And then the bottom here is just the total mass of the 



system, and so is this. OK, so that's how I think about this center of mass formula. And it's actually pretty 
easy to compute.  

 

So we have the integral from x equals 0 to 1, y equals 0 to 1. So now we have x times delta times dx dy. 
So altogether we get x squared y dy dx.  

 

So one of those x's is because we're averaging x and the other one is from the density function. So we 
have this whole integral. And then we divide by this integral of the mass, but we already computed this 
in part a, and we found it to be 1/4. OK. So this numerator here is fairly straightforward to compute. And 
if you do this you'll get-- let me double check-- I believe we got 1/6.  

 

So you should get 1/6 when you compute this integral. So we have 1/6 over 1/4, and so cancelling off, 
this is 2/3. OK. So that was just the x center of mass.  

 

But now I want to make an important point, which is that this density function is symmetric in x and y. It 
was just x times y. It wasn't something more complicated. And so the center of mass in the x-direction is 
just equal to the center of mass in the y-direction, so these are both equal to 2/3.  

 

OK. So that depended on the fact that our density was symmetric, and also on the fact that our region 
was symmetric about switching x and y. So we could save ourselves some trouble here. OK, very good.  

 

So now to do c, again we need to recall what is the infinitesimal moment of inertia. So let me draw this 
picture again. So here's our little dA here. And we want to know the infinitesimal moment of inertia 
around the origin. So we tie a string to this little piece of mass, and we start spinning it, and we want to 
know what is our moment of inertia corresponding to that little mass.  

 

And I'll just remind you from lecture that the formula is r squared dM. So this is r squared times xy dx dy. 
And so the r squared here is saying that as you get farther and farther out, your moment of inertia is 
getting larger and larger. And this makes sense in terms of the physical idea that you're moving a longer 
distance if you're farther out. So anyway. So this is our formula r squared dM.  

 



And so that tells us that I is just the integral of dI. And so this is the integral from x goes from 0 to 1, y 
goes from 0 to 1. And then we have x squared plus y squared-- that's just r squared-- times xy dx dy. And 
so we can rewrite this as x cubed y plus xy cubed dx dy.  

 

And this is a computation that we can do. Let me just check my notes real quick. So this is 1/4. I'll skip 
the computation, but this is just integrating some polynomials, so we can do that. All right.  

 

And now finally, we want to compute the moment of inertia. So remember, d asked us to compute the 
moment of inertia around the x-axis. So instead of around the origin, it's around the x-axis.  

 

So the idea here is the same. So again, dI is a factor times dM. And again, it's the radius, but now it's the 
radius about which we're spinning. So we're not anymore spinning around the origin as we were doing 
before. Now we're spinning around-- sort of out of the board-- around the x-axis here. But we still have 
the same formula, and now our radius is the height y. Because we're not spinning around the origin 
anymore, we're spinning around this rod here.  

 

And so if you think about it, that's the radius about which we're spinning is just the height y. So this is 
just y squared delta. OK. And so that tells us that I --the total inertia about the x-axis-- is just the integral 
of dI. And so we get the integral from x equals 0 to 1, integral y equals 0 to 1. And then we just have y 
squared xy dy dx. And this, again, we could compute-- and let me just check my notes-- and find that it's 
1/8.  

 

So in each of these problems, the most important thing to have been able to do is to argue, what is this 
sort of infinitesimal contribution to the physical quantity that you want to compute? And eventually, 
you want to express it in terms of the quantity dA, because dA is what we actually can integrate. And so 
all the other physical quantities that we need to study are going to be an integral of some infinitesimal 
element, and that infinitesimal element is going to be some coefficient times dA.  

 

So here, we had that this was-- oh, dear. This is a mistake. So this should have said y squared dM, and 
that's y squared delta dA. So I wrote the delta implicitly. I wrote it twice.  

 



So what we meant to say is dI is y squared delta dA. And so in all these examples, the infinitesimal 
quantity that we're after is some straightforward coefficient times the infinitesimal area. And so once 
we know that, then we can just do a straightforward integral.  

 

OK, and I'll leave it at that.   
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