Matrix multiplication

1. Let $A=\left(\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right), \quad B=\left(\begin{array}{lll}1 & 1 & 1 \\ 4 & 5 & 6\end{array}\right), \quad C=\left(\begin{array}{ll}1 & 4 \\ 1 & 5 \\ 1 & 6\end{array}\right), \quad D=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right), \quad E=\binom{5}{3}$.

For each of the following say whether it makes sense to compute it. If it makes sense then do the computation.
(i) $A A$ (ii) $A B$ (iii) $A C$ (iv) $A E$ (v) $D A$ (vi) $C E \quad$ (vii) $A+B \quad$ (viii) $A+D$.

Answer: i) A 2×2 matrix times a 2×2 matrix is a 2×2 matrix:
$A \cdot A=\left(\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right)=\left(\begin{array}{ll}13 & 18 \\ 24 & 37\end{array}\right)$.
ii) (2×2) times $(2 \times 3)=(2 \times 3): A \cdot A=\left(\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right)\left(\begin{array}{lll}1 & 1 & 1 \\ 4 & 5 & 6\end{array}\right)=\left(\begin{array}{lll}13 & 16 & 19 \\ 24 & 29 & 34\end{array}\right)$.
iii) (2×2) times (3×2) does not make sense.
iv) (2×2) times $(2 \times 1)=(2 \times 1): A \cdot E=\left(\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right)\binom{5}{3}=\binom{14}{35}$.
v) (2×2) times $(2 \times 2)=2 \times 2: \quad D \cdot A=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right)=\left(\begin{array}{rr}3 & 9 \\ 12 & 15\end{array}\right)$.
vi) (3×2) times $(2 \times 1)=(3 \times 1)$: $\left(\begin{array}{ll}1 & 4 \\ 1 & 5 \\ 1 & 6\end{array}\right)\binom{5}{3}=\left(\begin{array}{l}17 \\ 20 \\ 23\end{array}\right)$.
vii) For addition the matrices have to be the same size, so this does not make sense.
viii) This makes sense, the addition is done entrywise:
$A+D=\left(\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right)+\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)=\left(\begin{array}{ll}4 & 3 \\ 4 & 8\end{array}\right)$.
2. Let $A=\left(\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$. Find a column vector B such that $A B=\left(\begin{array}{c}b \\ e \\ h\end{array}\right)$ (the middle column of A).
Answer: $B=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \Rightarrow A B=\left(\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}b \\ e \\ h\end{array}\right)$.
3. Write the following system in matrix form

$$
\begin{aligned}
2 x+3 y+5 z & =2 \\
2 y+z & =1 \\
x-2 y+ & =3
\end{aligned}
$$

Answer:

$$
\left(\begin{array}{ccc}
2 & 3 & 5 \\
0 & 2 & 1 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

