Meaning of Matrix Multiplication

1. In this problem we will show that multiplication by the matrix

$$
A=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

acts by rotating vectors 45° counterclockwise. As usual, we write the vector $\mathbf{v}=x \mathbf{i}+y \mathbf{j}$ as a column vector $\binom{x}{y}$.
a) Show that the length of $A \mathbf{v}$ is the same as the length of \mathbf{v}.
b) Use the dot product to show the angle between \mathbf{v} and $A \mathbf{v}$ is $\pi / 4$ radians.
c) Use the cross product to show $A \mathbf{v}$ is $\pi / 4$ radians counterclockwise from \mathbf{v}.

Answer: a)

$$
A \mathbf{v}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\binom{x}{y}=\binom{\frac{x-y}{\sqrt{2}}}{\frac{x+y}{\sqrt{2}}} .
$$

This has length $\sqrt{\frac{(x-y)^{2}}{2}+\frac{(x+y)^{2}}{2}}=\sqrt{x^{2}+y^{2}}$. That is, we have shown $|A \mathbf{v}|=|\mathbf{v}|$ as required.
b) Using the expression for $A \mathbf{v}$ found in part (a) we compute the dot product

$$
A \mathbf{v} \cdot \mathbf{v}=\left\langle\frac{x-y}{\sqrt{2}}, \frac{x+y}{\sqrt{2}}\right\rangle \cdot\langle x, y\rangle=\frac{\left(x^{2}+y^{2}\right)}{\sqrt{2}} .
$$

By part (a) we know $|A \mathbf{v}|=|\mathbf{v}|=\sqrt{x^{2}+y^{2}}$. So the cosine of the angle between the two vectors is

$$
\frac{A \mathbf{v} \cdot \mathbf{v}}{|A \mathbf{v}||\mathbf{v}|}=\frac{1}{\sqrt{2}}=\cos (\pi / 4)
$$

c) We compute the cross product

$$
\mathbf{v} \times A \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x & y & 0 \\
(x-y) / \sqrt{2} & (x+y) / \sqrt{2} & 0
\end{array}\right|=\frac{x^{2}+y^{2}}{\sqrt{2}} \mathbf{k} .
$$

Since the coefficient of \mathbf{k} is positive the right hand rule tells us $A \mathbf{v}$ is counterclockwise from v.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

