Equation of a Plane

1. Find the equation of the plane containing the three points $P_{1}=(1,0,1), \quad P_{2}=(0,1,1)$, $P_{3}=(1,1,0)$.
Answer: The vectors $\overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}}$ and $\overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}}$ are in the plane, so

$$
\mathbf{N}=\overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}} \times \overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 1 & 0 \\
0 & 1 & -1
\end{array}\right|=\mathbf{i}(-1)-\mathbf{j}(1)+\mathbf{k}(-1)=\langle-1,-1,-1\rangle .
$$

is a normal to the plane. In point-normal form the equation for the plane is

$$
-(x-1)-y-(z-1)=0 \Leftrightarrow x+y+z=2 .
$$

2. Find the equation of the line through $(1,2)$ and $(3,1)$ in point-normal form.

Answer: A vector along the line is $\mathbf{v}=\langle 3,1\rangle-\langle 1,2\rangle=\langle 2,-1\rangle$, so a normal to the line is $\mathbf{N}=\langle 1,2\rangle$. Thus, in point-normal form the line has equation

$$
1(x-1)+2(y-2)=0 \Leftrightarrow x+2 y=5 .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

