18.02 Exam 4

Problem 1. (10 points)

Let C be the portion of the cylinder $x^2 + y^2 \leq 1$ lying in the first octant $(x \geq 0, y \geq 0, z \geq 0)$ and below the plane z = 1. Set up a triple integral in *cylindrical coordinates* which gives the moment of inertial of C about the z-axis; assue the density to be $\delta = 1$. (Give integrand and limits of integration, but *do not evaluate*.)

Problem 2. (20 points: 5, 15)

a) A solid sphere S of radius a is placed above the xy-plane so it is tangent at the origin and its diameter lies along the z-axis. Give its equation in *spherical coordinates*.

b) Give the equation of the horizontal plane z = a in spherical coordinates.

c) Set up a triple integral in spherical coordinates which gives the volume of the portion of the sphere S lying above the plane z = a. (Give integrand and limits of integration, but do not evaluate.)

Problem 3. (20 points: 5, 15)

Let
$$\vec{F} = (2xy + z^3)\hat{\mathbf{i}} + (x^2 + 2yz)\hat{\mathbf{j}} + (y^2 + 3xz^2 - 1)\hat{\mathbf{k}}$$

a) Show \vec{F} is conservative.

b) Using a systematic method, find a potential function f(x, y, z) such that $\vec{F} = \vec{\nabla} f$. Show your work even if you can do it mentally.

Problem 4.(25 points: 15, 10)

Let S be the surface formed by the part of the paraboloid $z = 1 - x^2 - y^2$ lying above the xy-plane, and let $\vec{F} = x \hat{i} + y \hat{j} + 2(1-z) \hat{k}$.

Calculate the flux of \vec{F} across S, taking the upward direction as the one for which the flux is positive. Do this in two ways:

a) by direct calculation of $\int \int_{S} \vec{F} \cdot \hat{\mathbf{n}} \, dS$;

b) by computing the flux across a simpler surface and using the divergence theorem.

Problem 5. (25 points: 10, 8, 7)

Let $\vec{F} = -2xz\,\hat{\mathbf{i}} + y^2\,\hat{\mathbf{k}}.$

a) Calculate curl \vec{F} .

b) Show that $\int \int_R \operatorname{curl} \vec{F} \cdot \hat{\mathbf{n}} \, dS = 0$ for any finite portion R of the unit sphere $x^2 + y^2 + z^2 = 1$ (take the normal vector $\hat{\mathbf{n}}$ pointing outward).

c) Show that $\oint_C \vec{F} \cdot d\vec{r} = 0$ for any simple closed curve C on the unit sphere $x^2 + y^2 + z^2 = 1$.

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.