Meaning of matrix multiplication

In these examples we will explore the effect of matrix multiplication on the $x y$-plane.
Example 1: The matrix $A=\left(\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right)$ transforms the unit square into a parallelogram as follows.
The unit square has sides \mathbf{i} and \mathbf{j}. In order multiply a matrix times a vector we write them as column vectors. For example, $\mathbf{i}=\langle 1,0\rangle, \mathbf{j}=\langle 0,1\rangle$ and $\mathbf{v}=\left\langle a_{1}, a_{2}\right\rangle$ are written

$$
\mathbf{i}=\binom{1}{0}, \quad \mathbf{j}=\binom{0}{1} \quad \mathbf{v}=\binom{a_{1}}{a_{2}}
$$

The matrix multiplication then becomes

$$
A \mathbf{i}=A\binom{1}{0}=\binom{4}{1} ; \quad A \mathbf{j}=A\binom{0}{1}=\binom{1}{3} .
$$

We think of the all the points in the square as the endpoints of origin vectors. If we multiply A by all of these vectors we get the following picture.

The square is mapped to the parallelogram. We know that the area of the parallelogram is $|A|=11$. (Think about the 2×2 determinant you would use to compute the area of the parallelogram.)

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus
 Fall 2010 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

