Velocity, speed and arc length

Speed

Velocity, being a vector, has a magnitude and a direction. The direction is tangent to the curve traced out by $\mathbf{r}(t)$. The magnitude of its velocity is the speed.

$$
\text { speed }=|\mathbf{v}|=\left|\frac{d \mathbf{r}}{d t}\right| .
$$

Speed is in units of distance per unit time. It reflects how fast our moving point is moving.
Example: A point goes one time around a circle of radius 1 unit in 3 seconds. What is its average velocity and average speed.
Answer: The distance the point traveled equals the circumference of the circle, 2π. Its net displacement is $\mathbf{0}$, since it ends where it started. Thus, its average speed $=$ distance/time $=2 \pi / 3$ and its average velocity $=$ displacement $/$ time $=\mathbf{0}$.
If you look carefully, we've used a boldface $\mathbf{0}$ because velocity is a vector.
Our usual symbol for distance traveled is s. For a point moving along a curve the distance traveled is the length of the curve. Because of this we also refer to s as arc length.

Notation and nomenclature summary:
Since we will use a variety of notations, we'll collect them here. The unit tangent vector will be explained below. As you should expect, we will also be able to view everything from a geometric perspective.
$\mathbf{r}(t)=$ position.
In the plane $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}=\langle x, y\rangle$
In space $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$.
$\frac{d \mathbf{r}}{d t}=\mathbf{v}(t)=$ velocity $=$ tangent vector.
In the plane $\mathbf{v}=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}=\left\langle x^{\prime}, y^{\prime}\right\rangle$
In space $\mathbf{v}=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}=\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle$.
$\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}=$ unit tangent vector.
$s=$ arclength, \quad speed $=\frac{d s}{d t}=|\mathbf{v}|$.
In the plane $\frac{d s}{d t}=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}$.
In space $\frac{d s}{d t}=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}}$.
$\mathbf{v}=\frac{d s}{d t} \mathbf{T}, \quad \mathbf{T}=\frac{\mathbf{v}}{d s / d t}$
$\mathbf{a}(t)=\frac{d \mathbf{v}}{d t}=\frac{d^{2} \mathbf{r}}{d t^{2}}=$ acceleration.
In the plane $\mathbf{a}(t)=x^{\prime \prime}(t) \mathbf{i}+y^{\prime \prime}(t) \mathbf{j}=\left\langle x^{\prime \prime}, y^{\prime \prime}\right\rangle$
In space $\mathbf{a}=x^{\prime \prime}(t) \mathbf{i}+y^{\prime \prime}(t) \mathbf{j}+z^{\prime \prime}(t) \mathbf{k}=\left\langle x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right\rangle$.

Unit tangent vector

As its name implies, the unit tangent vector is a unit vector in the same direction as the tangent vector. We usually denote it \mathbf{T}. We compute it by dividing the tangent vector by its length. Here are several ways of writing this.

$$
\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{d \mathbf{r} / d t}{d s / d t}=\frac{\mathbf{v}}{d s / d t}
$$

Multiply \mathbf{T} by $d s / d t$ gives the formula

$$
\mathbf{v}=\frac{d s}{d t} \mathbf{T}
$$

which expresses velocity as a magnitute, $d s / d t$ and a direction \mathbf{T}.

Geometric considerations

Here we'll offer a mathematical justification for our statement that

$$
\text { speed }=\frac{d s}{d t}=|\mathbf{v}| .
$$

We'll work in two dimensions. The extension to 3D is straightforward.
The figure below shows a curve, and a small displacement $\Delta \mathbf{r}$. The length along the curve from the start to end of the displacement is Δs.

We see $\Delta s \approx|\Delta \mathbf{r}|=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$. Dividing by Δt gives

$$
\frac{\Delta s}{\Delta t} \approx\left|\frac{\Delta \mathbf{r}}{\Delta t}\right|=\sqrt{\left(\frac{\Delta x}{\Delta t}\right)^{2}+\left(\frac{\Delta y}{\Delta t}\right)^{2}}
$$

Taking the limit as $\Delta t \rightarrow 0$ gives

$$
\frac{d s}{d t}=\left|\frac{d \mathbf{r}}{d t}\right|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus
 Fall 2010 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

