Computing 3×3 determinants

1. a) Compute $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|$.
b) Compute $\left|\begin{array}{rrr}2 & 1 & -5 \\ 0 & 0 & 4 \\ 3 & 1 & 2\end{array}\right|$.

Answer: a) Using Laplace expansion along the first row (and remembering to put minus signs at the appropriate place) we get
$\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|=1 \cdot\left|\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right|-2 \cdot\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|+3 \cdot\left|\begin{array}{ll}4 & 5 \\ 7 & 8\end{array}\right|=(45-48)-2(36-42)+3(32-35)=-3+12-9=0$.
To show everything we wrote out the arithmetic in detail. You would not need to show all this. It's usually easier to do the simple arithmetic in your head -but, never be afraid of writing out the details. The shorter answer would look something like

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=-3+12-9=0
$$

b) Because of the zeros we'll use Laplace expansion along the second row. (The signs are -+- , but the first two terms are 0 .)

$$
\left|\begin{array}{rrr}
2 & 1 & -5 \\
0 & 0 & 4 \\
3 & 1 & 2
\end{array}\right|=-4 \cdot\left|\begin{array}{rr}
2 & 1 \\
3 & 1
\end{array}\right|=-4(2-3)=4
$$

2. Compute $\left|\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 6 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 5 & 1 & 2\end{array}\right|$

Answer: In principle a 4 x 4 matrix requires us to compute four 3 x 3 determinants. Here we can expand along the second row so we'll only have one non-zero term. The signs for the second row are -+-+ .

$$
\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & 6 & 0 \\
1 & 0 & 2 & 0 \\
1 & 5 & 1 & 2
\end{array}\right|=-6\left|\begin{array}{ccc}
1 & 2 & 4 \\
1 & 0 & 0 \\
1 & 5 & 2
\end{array}\right|
$$

This $3 x 3$ determinant can be expanded along its second row.

$$
\left|\begin{array}{lll}
1 & 2 & 4 \\
1 & 0 & 0 \\
1 & 5 & 2
\end{array}\right|=-(-16)=16
$$

So the original determinant is $-6 \cdot 16=-96$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

