Distances to planes and lines

1. Using vector methods, find the distance from the point $(1,0,0)$ to the plane $2 x+y-2 z=0$. Include a 'cartoon' sketch illustrating your solution.

Answer: The sketch shows the plane and the point $P=(1,0,0) . Q=(0,0,0)$ is a point on the plane. R is the point on the plane closest to P.

As usual, our sketches are merely suggestive and we do not actually find the point R.
The figure shows that

$$
\text { distance }=|P R|=|\overrightarrow{\mathbf{P Q}}| \cos \theta=\left|\overrightarrow{\mathbf{P Q}} \cdot \frac{\mathbf{N}}{|\mathbf{N}|}\right|
$$

Computing $\overrightarrow{\mathbf{P Q}}=\langle 1,0,0\rangle$ gives

$$
\text { distance }=\left|\overrightarrow{\mathbf{P Q}} \cdot \frac{\mathbf{N}}{|\mathbf{N}|}\right|=\left|\langle 1,0,0\rangle \cdot \frac{\langle 2,1,-2\rangle}{3}\right|=\frac{2}{3}
$$

2. Using vector methods, find the distance from the point $(0,0)$ to the line $2 x+y=2$. Include a sketch.

Answer: Finding the distance from a point to a line in the plane is just like finding the distance from a point to a plane in space.
The normal to the line is $\mathbf{N}=\langle 2,1\rangle$ and a point on the line is $Q=(1,0)$. We have

$$
\text { distance }=\left|\overrightarrow{\mathbf{P Q}} \cdot \frac{\mathbf{N}}{|\mathbf{N}|}\right|=\left|\langle-1,0\rangle \cdot \frac{\langle 2,1\rangle}{\sqrt{5}}\right|=\frac{2}{\sqrt{5}}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

