
Matrices 2. Solving Square Systems 
of Linear Equations; Inverse Matrices 

Solving square systems of linear equations; inverse matrices. 

Linear algebra is essentially about solving systems of linear equations, an important 
application of mathematics to real-world problems in engineering, business, and science, 
especially the social sciences. Here we will just stick to the most important case, where the 
system is square, i.e., there are as many variables as there are equations. In low dimensions 
such systems look as follows (we give a 2 × 2 system and a 3 × 3 system): 

a11x1 + a12x2 = b1 a11x1 + a12x2 + a13x3 = b1 

(7) a21x1 + a22x2 = b2 a21x1 + a22x2 + a23x3 = b2 

a31x1 + a32x2 + a33x3 = b3 

In these systems, the aij and bi are given, and we want to solve for the xi. 

As a simple mathematical example, consider the linear change of coordinates given by 
the equations 

x1 = a11y1 + a12y2 + a13y3 

x2 = a21y1 + a22y2 + a23y3 

x3 = a31y1 + a32y2 + a33y3 

If we know the y-coordinates of a point, then these equations tell us its x-coordinates 
immediately. But if instead we are given the x-coordinates, to find the y-coordinates we 
must solve a system of equations like (7) above, with the yi as the unknowns. 

Using matrix multiplication, we can abbreviate the system on the right in (7) by 

    

x1 b1 

(8)	 Ax = b, x =  x2  , b =  b2  , 
x3 b3 

where A is the square matrix of coefficients ( aij ). (The 2× 2 system and the n × n system 
would be written analogously; all of them are abbreviated by the same equation Ax = b, 
notice.) 

You have had experience with solving small systems like (7) by elimination: multiplying 
the equations by constants and subtracting them from each other, the purpose being to 
eliminate all the variables but one. When elimination is done systematically, it is an efficient 
method. Here however we want to talk about another method more compatible with hand
held calculators and MatLab, and which leads more rapidly to certain key ideas and results 
in linear algebra. 

Inverse matrices. 

Referring to the system (8), suppose we can find a square matrix M , the same size as A, 
such that 

(9)	 MA = I (the identity matrix). 
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We can then solve (8) by matrix multiplication, using the successive steps, 

A x = b


M(A x) = M b


(10) x = M b; 

where the step M(Ax) = x is justified by 

M(A x) = (MA)x, by associative law; 

= I x, by (9); 

= x, because I is the identity matrix . 

Moreover, the solution is unique, since (10) gives an explicit formula for it. 

The same procedure solves the problem of determining the inverse to the linear change 
of coordinates x = Ay, as the next example illustrates. 

1 2 −3 2 
Example 2.1 Let A = and M = . Verify that M satisfies (9) 

2 3 2 −1 
above, and use it to solve the first system below for xi and the second for the yi in terms of 
the xi: 

x1 + 2x2 = −1 x1 = y1 + 2y2 

2x1 + 3x2 = 4 x2 = 2y1 + 3y2 

( ) ( ) ( ) 

1 2 −3 2 1 0 
Solution. We have = , by matrix multiplication. To 

2 3 2 −1 0 1 

x1 −3 2 −1 11 
solve the first system, we have by (10), = = , so the 

x2 2 −1 4 −6 
solution is x1 = 11, x2 = −6. By reasoning similar to that used above in going from Ax = b 
to x = Mb, the solution to x = Ay is y = Mx, so that we get 

y1 = −3x1 + 2x2 

y2 = 2x1 − x2 

as the expression for the yi in terms of the xi. 

Our problem now is: how do we get the matrix M? In practice, you mostly press a key 
on the calculator, or type a Matlab command. But we need to be able to work abstractly 
with the matrix — i.e., with symbols, not just numbers, and for this some theoretical ideas 
are important. The first is that M doesn’t always exist. 

M exists ⇔ |A| 6= 0. 

The implication ⇒ follows immediately from the law M-5 in section M.1 (det(AB) = 
det(A)det(B)) , since 

MA = I ⇒ |M ||A| = |I| = 1 ⇒ |A| 6= 0. 
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The implication in the other direction requires more; for the low-dimensional cases, we will 
produce a formula for M . Let’s go to the formal definition first, and give M its proper 
name, A−1: 

Definition. Let A be an n × n matrix, with |A| 6= 0. Then the inverse of A is an n × n 
matrix, written A−1, such that 

(11) A−1A = In, AA−1 = In 

(It is actually enough to verify either equation; the other follows automatically — see the 
exercises.) 

Using the above notation, our previous reasoning (9) - (10) shows that 

(12) |A| =6 0 ⇒ the unique solution of A x = b is x = A−1b; 

(12) |A| 6 0 ⇒ the solution of x = A y for the yi is y = A−1 = x. 

Calculating the inverse of a 3× 3 matrix 

Let A be the matrix. The formulas for its inverse A−1 and for an auxiliary matrix adjA 
called the adjoint of A (or in some books the adjugate of A) are 

 T 
A11 A12 A13 1 1 

(13) A−1 = adj A =  A21 A22 A23  . 
|A| |A| 

A31 A32 A33 

In the formula, Aij is the cofactor of the element aij in the matrix, i.e., its minor with its 
sign changed by the checkerboard rule (see section 1 on determinants). 

Formula (13) shows that the steps in calculating the inverse matrix are: 

1. Calculate the matrix of minors. 

2. Change the signs of the entries according to the checkerboard rule. 

3. Transpose the resulting matrix; this gives adjA. 

4. Divide every entry by |A|. 
(If inconvenient, for example if it would produce a matrix having fractions for every entry, 
you can just leave the 1/|A| factor outside, as in the formula. Note that step 4 can only be 
taken if |A| 6 0, so if you haven’t checked this before, you’ll be reminded of it now.) = 

The notation Aij for a cofactor makes it look like a matrix, rather than a signed 
determinant; this isn’t good, but we can live with it. 
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1 0 −1

Example 2.2 Find the inverse to A =  0 1 1 .


1 0 1


Solution. We calculate that |A| = 2. Then the steps are (T means transpose): 

        

0 
 0 1 1 →  0 2 0 →  1 2 −1 →  

1 1 − 1 
 

1 0 −1 1 1 −1 1 0 1 
2

1 
2

1 

2 2 
1 0 1 1 −1 1 −1 0 1 − 1 0 1 

2 2 

matrix A cofactor matrix T adj A inverse of A 

To get practice in matrix multiplication, check that A · A−1 = I, or to avoid the fractions, 
check that A · adj (A) = 2I. 

The same procedure works for calculating the inverse of a 2 × 2 matrix A. We do it for 
a general matrix, since it will save you time in differential equations if you can learn the 
resulting formula. 

a b d −c d −b 1 d −b 
→ → → 

c d −b a −c a |A| −c a 

matrix A cofactors T adj A inverse of A 

  

( ) 1 2 2 
1 0 

Example 2.3 Find the inverses to: a) b)  2 −1 1 

3 2 
1 3 2 

1 2 0 1 0 
Solution. a) Use the formula: |A| = 2, so A−1 =

2 −3 1 
= 

− 3 1 . 
2 2 

b) Follow the previous scheme: 
        

1 2 2 −5 −3 7 −5 2 4 −5 2 4 
 2 −1 1 →  2 0 −1 →  −3 0 3 → 1 

 −3 0 3 = A−1 .
3 

1 3 2 4 3 −5 7 −1 −5 7 −1 −5 

Both solutions should be checked by multiplying the answer by the respective A. 

Proof of formula (13) for the inverse matrix. 

We want to show A · A−1 = I, or equivalently, A · adj A = |A|I; when this last is written 
out using (13) (remembering to transpose the matrix on the right there), it becomes 

     

a11 a12 a13 A11 A21 A31 |A| 0 0 
(14)  a21 a22 a23  A12 A22 A32  =  0 |A| 0  . 

a31 a32 a33 A13 A23 A33 0 0 |A| 

To prove (14), it will be enough to look at two typical entries in the matrix on the right — 
say the first two in the top row. According to the rule for multiplying the two matrices on 
the left, what we have to show is that 

(15) a11A11 + a12A12 + a13A13 = |A|; 

(16) a11A21 + a12A22 + a13A23 = 0 
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These two equations are both evaluating determinants by Laplace expansions: the first 
equation (15) evaluates the determinant on the left below by the cofactors of the first row; 
the second equation (16) evaluates the determinant on the right below by the cofactors of 
the second row (notice that the cofactors of the second row don’t care what’s actually in 
the second row, since to calculate them you only need to know the other two rows). 

∣ ∣ ∣ ∣ 

∣ a11 a12 a13 
∣ ∣ a11 a12 a13 

∣ 

∣ ∣ ∣ ∣ 

∣ a21 a22 a23 
∣ ∣ a11 a12 a13 

∣ 

∣ ∣ ∣ ∣ 

∣ a31 a32 a33 
∣ ∣ a31 a32 a33 

∣ 

The two equations (15) and (16) now follow, since the determinant on the left is just |A|, 
while the determinant on the right is 0, since two of its rows are the same. � 

The procedure we have given for calculating an inverse works for n ×n matrices, but gets 
to be too cumbersome if n > 3, and other methods are used. The calculation of A−1 for 
reasonable-sized A is a standard package in computer algebra programs and MatLab. Unfor
tunately, social scientists often want the inverses of very large matrices, and for this special 
techniques have had to be devised, which produce approximate but acceptable results. 
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