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JOEL LEWIS: Hi. Welcome back to recitation. In lecture, you've been learning about line integrals of 
vector fields. And I have one problem here that requires you to do two line integrals of vector fields on 
that subject. So OK.  

 

So in both problems, F is going to be the vector field of whose coordinates are xy and x squared plus y 
squared. And C is going to be the arc of the parabola y equals x squared that starts at the point 1, 1 and 
ends at the point 2, 4. All right? So what I'd like you to do is to compute the integral over this curve C of 
F.dr in two different ways.  

 

So the first time, I'd like you to use the natural parametrization x equals t, y equals t squared. For me, at 
least, that's the first parametrization that I think of when I think about this curve. But I'd also like you to 
do it again using a different parametrization, using the parametrization x equals e to the t, y equals e to 
the 2t. So this still parametrizes the curve y equals x squared, since e to the t squared equals e to the 2t.  

 

So why don't you pause the video, have a go at computing this integral using these two different 
parametrizations, come back, and we can work it out together.  

 

So let's get started. We want to compute a line integral of a vector field F. So we know that the integral 
over our curve C of F.dr-- well, usually we write-- F equals M, N. The two components are M and N. So in 
this case, this is going to be equal to the integral over C of M dx plus N dy.  

 

Now, in our case, we know what F is. We know that F is the vector field xy, x squared plus y squared. So 
this is equal to the integral over C of xy dx, plus x squared plus y squared dy. And now we just need to 
plug in for our two different cases, into our parametrizations, and this will turn into an integral that we 
can evaluate. So let's have a look-see.  

 

So in our first parametrization over here, we have x equals t and y equals t squared. And we want this 
parametrization to go from the points 1, 1 to the point 2, 4. So that means that t-- x-- t is going from 1 to 
2. OK.  



 

So I'm going to just write equals, and continue on. So in this first part, t is our parameter, and it's going 
from 1 to 2. So xy is going to be t times t squared, and dx is dt. And then plus-- so x squared plus y 
squared is-- t squared plus t to the fourth. And dy is times 2t dt, since y is t squared. All right. So this is 
our integral.  

 

And now it's straightforward to compute. This is single variable integral of a polynomial, so we might 
have some fraction arithmetic in our future, but nothing horrible.  

 

So let's collect our dt's. So this is the integral from 1 to 2. So here I've got 2t cubed plus 2t to the fifth. 
And here I have t cubed. So that's 3t cubed plus 2t to the fifth dt.  

 

OK, and so now we have to evaluate. So this is equal to-- let me just continue it. So 3t cubed becomes 3t 
to the fourth over 4. Plus 2t to the fifth becomes-- well, t to the sixth over 6-- 2t to the sixth over 6, so 
that's-- plus t to the sixth over 3, between t equals 1 and 2. And let me just bring that computation up 
here.  

 

So that's equal to 3 times 16 over 4, plus 64 over 3, minus 3/4 plus 1/3. OK, and now we gotta work this 
out. So this is maybe 12, and the thirds give me 21, so that's 33 minus 3/4. So that's 32 and 1/4, or 129 
over 4, if you prefer. OK, so that's going to be our answer there.  

 

So now let's go back and do it again using this alternate parametrization. So in this alternate 
parametrization, we had x equal e to the t, and y equal e to the 2t. So in that case, that means that dx --
also x is e to the t y equals 2t-- so our integral that we want, let me rewrite it. Well, actually, let me not 
rewrite it. Let me just go back here and take a look at it.  

 

So we want the integral of F.dr,  and we know that that's equal to the integral over C of xy dx plus x 
squared plus y squared dy. So x is e to the t, y is e to the 2t, so that means dx is going to be e to the t dt 
and dy is going to be 2e to the 2t dt.  

 

So OK. So we'll just have to plug these things in. So our integral-- maybe I'll give it a name: What We 
Want. WWW. What We Want is equal to the integral of, well we start plugging in. So xy dx is e to the t 



times e to the 2t times, we said dx is e to the t dt. Plus, now x squared plus y squared, so that's e to the 
2t-- that's x squared, plus e to the 4t-- that's y squared-- times 2e to the 2t dt. That's dy. Whew. OK.  

 

But this integral is missing something, right? Because it needs to be a definite integral. Right now, I've 
written down an indefinite integral. So that's a problem. So we need to think, what are the bounds on 
this curve? What are we integrating from and to? So let's go all the way back and look at the problem 
over here.  

 

So this is the parametrization of the curve, and we need it to connect the points 1, 1 and 2, 4. So we 
need to know which value of t puts this parametrization at the point 1, 1, and which value of t puts it at 
the point 2, 4.  

 

Well, I think the easiest way to do that is to solve this, and we have t equals natural log of x. So natural 
log of 1 is 0, and natural log of 2 is natural log of 2. So OK. So we want t to go from 0 to natural log of 2. 
To go from this point to that one.  

 

OK, so 0 to natural log of 2. Let's remember that, and come back over here and put that in. So we want 
this integral that we're trying to compute using this alternate parametrization-- we've already written 
down what the integrand is-- but it's going to be the integral, we just said, from 0 to the natural log of 2. 
OK. Great. So now let's take this integral and let's start simplifying it.  

 

So let's see. This is an e to the t times e to the 2t times e to the t, so that's e to the 4t dt. And here we 
have-- that looks like-- a 2e to the 4t plus 2e to the 6t dt. So if we combine like terms, we get the integral 
from 0 to natural log of 2. So we had an e to the 4t and a 2e to the 4t, so that's 3e to the 4t plus 2e to 
the 6t dt.  

 

OK, 3e to the 4t plus 2e to the 6t. OK. And this is also a different-looking integral than the one we had 
before, but it's not a difficult one to evaluate, because it's just e to a constant times t dt. Pretty 
straightforward stuff, I think. So what does it actually give us? Let me come up here and write it up here.  

 

So this is equal to-- all right, integrate e to the 4t-- and you get e to the 4t over 4, so this is 3/4 e to the 
4t, plus 2/6, so that's plus 1/3 e to the 6t, and we're evaluating that between 0 and ln 2. And I will leave 



it to you to confirm that what you get when you do this is you get exactly 129 over 4 when you plug in 
these values and take the difference.  

 

So one thing to notice here is that doing it with the second parametrization, we got 129 over 4. Now, if 
you look back just right here, you see that when we did it with the first parametrization, we also got 129 
over 4. Now this is a general phenomenon, right? The parametrization doesn't change the value of the 
line integral.  

 

So when you have a line integral of a vector field, you can parametrize the curve that you're integrating 
over in a bunch of different ways. I mean, in fact, infinitely many different ways. There are all sorts of 
different choices, and they all give the same answer. They have to. So no matter what parametrization 
you choose, you get the same number out for the line integral over the same curve of the same vector 
field. All right.  

 

So what that means for you is that when you're given just a curve and a vector field and you get to 
choose your parametrization, you should always just choose whatever the nicest one is. Because it 
doesn't matter which one you choose, and there's no reason ever to choose anything harder than 
necessary. All right.  

 

So now, I want to quickly recap what we did. So we had a curve and a vector field F, and we were asked 
to compute the line integral of F.dr, and we did it two different ways.  

 

So in both cases, we used the fact that F.dr is M dx plus N dy. We wrote that out using the known values 
of M and N, and using the known components of F. And then we plugged in for both cases.  

 

In this case, we used that first parametrization. And then over to my left, we used this second 
parametrization that I gave you. And in both cases, that reduced it to an integral in terms of a single 
variable t that was the parameter that we could compute. And the answer came out the same both 
times, as it had to.  

 

So one thing you can notice is if you compare this with the preceding lecture video, you'll see that this 
curve and vector field, they connect the same points and it's the same vector field, and these answers 
both differ from both of the answers in the preceding recitation video. So this is further illustration that 



different curves can give you different values, but if you take the same curve, different parametrizations 
always have to give you same values for that line integral of the same vector field. I'll end there.   
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