Green's Theorem: Sketch of Proof

Green's Theorem: $\oint_{C} M d x+N d y=\iint_{R} N_{x}-M_{y} d A$.

Proof:

i) First we'll work on a rectangle. Later we'll use a lot of rectangles to approximate an arbitrary region.
ii) We'll only do $\oint_{C} M d x \quad\left(\oint_{C} N d y\right.$ is similar $)$.

By direct calculation the right hand side of Green's Theorem
$\iint_{R}-\frac{\partial M}{\partial y} d A=\int_{a}^{b} \int_{c}^{d}-\frac{\partial M}{\partial y} d y d x$.
Inner integral: $\quad-\left.M(x, y)\right|_{c} ^{d}=-M(x, d)+M(x, c)$

Outer integral: $\iint_{R}-\frac{\partial M}{\partial y} d A=\int_{a}^{b} M(x, c)-M(x, d) d x$.
For the LHS we have

$$
\begin{aligned}
\oint_{C} M d x & =\int_{\text {bottom }} M d x+\int_{\text {top }} M d x \quad \text { (since } d x=0 \text { along the sides) } \\
& =\int_{a}^{b} M(x, c) d x+\int_{b}^{a} M(x, d) d x=\int_{a}^{b} M(x, c)-M(x, d) d x .
\end{aligned}
$$

So, for a rectangle, we have proved Green's Theorem by showing the two sides are the same.
In lecture, Professor Auroux divided R into "vertically simple regions". This proof instead approximates R by a collection of rectangles which are especially simple both vertically and horizontally.
For line integrals, when adding two rectangles with a common edge the common edges are traversed in opposite directions so the sum is just the line integral over the outside boundary. Similarly when adding a lot of rectangles: everything cancels except the outside boundary. This extends Green's Theorem on a rectangle to Green's Theorem on a sum of rectangles. Since any region can be approximated as closely as we want by a sum of rectangles, Green's Theorem must hold on arbitrary regions.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

