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25. First order systems and second order equations 

25.1. The companion system. One of the main reasons we study 
first order systems is that a differential equation of any order may be 
replaced by an equivalent first order system. Computer ODE solvers 
use this principle. 

To illustrate, suppose we start with a second order homogeneous LTI 
system, 

ẍ + bẋ + cx = 0. 

The way to replace this by a first order system is to introduce a new 
variable, say y, related to x by 

y = x.˙

Now we can replace ẍ by ẏ in the original equation, and find a system: 

ẋ = y
(1) 

ẏ = −cx − by 

The solution x(t) of the original equation appears as the top entry in 
the vector-valued solution of this system. 

This process works for any higher order equation, linear or not, pro
vided we can express the top derivative as a function of the lower ones 
(and t). An nth order equation gives rise to a first order system in n 
variables. 

The trajectories of this system represent in very explicit form many 
aspects of the time evolution of the original equation. You no longer 
have time represented by an axis, but you see the effect of time quite 
vividly, since the vertical direction, y, records the velocity, y = ẋ. A 
stable spiral, for example, reflects damped oscillation. (See the Mathlet 
Damped Vibrations for a clear visualization of this.) 

The matrix for the system (1), 
⎩ ⎪ 

0 1 
−c −b

, 

is called the companion matrix. These matrices constitute quite a wide 
range of 2 × 2 matrices, but they do have some special features. For 
example, if a companion matrix has a repeated eigenvalue then it is 
necessarily incomplete, since a companion matrix can never be a mul
tiple of the identity matrix. 

This association explains an apparent conflict of language: we speak 
of the characteristic polynomial of a second order equation—in the case 
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at hand it is p(s) = s2 + bs + c. But we also speak of the characteristic 
polynomial of a matrix. Luckily (and obviously) 

The characteristic polynomial of a second order LTI operator 
is the same as the characteristic polynomial of the companion 
matrix. 

25.2. Initial value problems. Let’s do an example to illustrate this 
process, and see how initial values get handled. We will also use this 
example to illustrate some useful ideas and tricks about handling linear 
systems. 

Suppose the second order equation is 

(2) ẍ + 3ẋ + 2x = 0. 

The companion matrix is 
⎩ ⎪ 

0 1 
A = ,−2 −3 

so solutions to (2) are the top entries of the solutions to ẋ = Ax. 

An initial value for (2) gives us values for both x and ẋ at some 
initial time, say t = 0. Luckily, this is exactly the data we need for an 

⎩ ⎪ 
x(0)

initial value for the matrix equation ẋ = Ax: x(0) = . 
ẋ(0) 

Let’s solve the system first, by finding the exponential eAt . The 
eigenvalues of A are the roots of the characteristic polynomial, namely 
�1 = −1, �2 = −2. (From this we know that there are two normal 
modes, one with an exponential decay like e−t, and the other with a 
much faster decay like e−2t . The phase portrait is a stable node.) 

To find an eigenvector for �1, we must find a vector ∂1 such that 
(A − �1I)∂1 = 0. Now 

⎩ ⎪ 
1 1 

A − (−1)I = . −2 −2 

A convenient way to find a vector killed by this matrix is to take the 
entries from one of the rows, reverse their order and one of their signs: 

⎩ ⎪ 
1 

so for example ∂1 = will do nicely. The other row serves as −1 
a check; if it doesn’t kill this vector then you have made a mistake 
somewhere. In this case it does. 

⎩ ⎪ 
1 

Similarly, an eigenvector for �2 is ∂2 = .
−2
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The general solution is thus 
⎩ ⎪ ⎩ ⎪ 

(3)	 x = ae −t 1
+ be−2t 1 

. −1 −2 

From this expression we can get a good idea of what the phase por
trait looks like. There are two eigendirections, containing straight line 

⎩ ⎪ 
1 

solutions. The line through contains solutions decaying like −1 
e−t . (Notice that this single line contains infinitely many solutions: for 
any point x0 on the line there is a solution x with x(0) = x0. If x0 

is the zero vector then this is the constant solution x = 0.) The line 
⎩ ⎪ 

through 
1 

contains solutions decaying like e−2t . −2 

The general solution is a linear combination of these two. Notice 
⎩ ⎪ 

1 
that as time grows, the coefficient of varies like the square of 

⎩ ⎪ −2 
1 

the coefficient of . When time grows large, both coefficients −1 
become small, but the second becomes smaller much faster than the 
first. Thus the trajectory becomes asymptotic to the eigenline through 
⎩ ⎪ 

1 
. If you envision the node as a spider, the body of the spider is −1 

⎩ ⎪ 
1 

oriented along the eigenline through . −1 

A fundamental matrix is given by lining up the two normal modes 
as columns of a matrix: 

⎩	 ⎪ 
−t −2te e

� = −t −2t . −e −2e

Since each column is a solution, any fundamental matrix itself is a 
solution to ẋ = Ax in the sense that 

�̇ = A�. 

(Remember, premultiplying � by A multiplies the columns of � by A 
separately.) 

The exponential matrix is obtained by normalizing �, i.e. by post-
multiplying � by �(0)−1 so as to obtain a fundamental matrix which 
is the identity at t = 0. Since 

⎩ ⎪ 
1 1 

�(0) = [∂1 ∂2] = , −1 −2 
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⎩ ⎪ 

�(0)−1 =
2 1 
−1 −1 

and so 
⎩ ⎪ 

e At = �(t)�(0)−1 = −
2
2
e
e

−

−

t

t 
−
+ 2

e−

e

2

−

t 

2t −
e
e

−

−

t

t 
−
+ 2

e−

e

2

−

t 

2t . 

Now any IVP for this ODE is easy to solve: x = eAtx(0). For 
⎩ ⎪ 

1 
example, if x(0) = , then 

1 
⎩ ⎪ 

3e−t − 2e−2t 

x = −2t . −3e−t + 4e

Now let’s solve the original second order system, and see how the 
various elements of the solution match up with the work we just did. 

⎩ ⎪ 
x 

The key is always the fact that y = ẋ: x = . 
ẋ

As observed, the characteristic polynomial of (2) is the same as that 
of A, so the eigenvalues of A are the roots, and we have two normal 
modes: e−t and e−2t . These are the exponential solutions to (2). The 
general solution is 

x = ae −t + be−2t . 
Note that (3) has this as top entry, and its derivative as bottom entry. 

To solve general IVPs we would like to find the pair of solutions 
which is normalized at t = 0 as in Section 9. These are solutions x1 

⎩ ⎪ ⎩ ⎪ ⎩ ⎪ ⎩ ⎪ 
x1(0) 1 x2(0) 0 

and x2 such that = and = . This 
ẋ1(0) 0 ẋ2(0) 1 

says exactly that we are looking for the columns of the normalized 
fundamental matrix eAt! Thus we can read off x1 and x2 from the top 
row of eAt: 

x1 = 2e −t − e −2t , x2 = e −t − e −2t . 
The bottom row of eAt is of course exactly the derivative of the top 
row. 

The process of finding �(0)−1 is precisely the same as the process 
of finding the numbers a, b, c, d such that x1 = ae−t + be−2t and x2 = 
ce−t + de−2t form a normalized pair of solutions. If A is the companion 
matrix for a second order homogeneous LTI equation, then the entries 
in the top row of eAt constitute the pair of solutions of the original 
equation normalized at t = 0. 
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