Recitation 5, February 18, 2010

Complex numbers, complex exponentials

1. Mark $z=1+\sqrt{3} i$ on the complex plane. What is its polar coordinates? Then mark z^{n} for $n=1,2,3,4$. What is each in the form $a+b i$? What is each one in the form $A e^{i \theta}$? Then mark z^{n} for $n=0,-1,-2,-3,-4$.
2. Find a complex number $a+b i$ such that $e^{a+b i}=1+\sqrt{3} i$. In fact, find all such complex numbers. For definiteness, fix b to be positive but as small as possible. (This is probably the first one you thought of.) What is $e^{n(a+b i)}$ for $n=$ $1,2,3,4$? (Hint: $e^{n(a+b i)}=\left(e^{a+b i}\right)^{n}$.) How about for $n=0,-1,-2,-3,-4$?
3. Write each of the following functions $f(t)$ in the form $A \cos (\omega t-\phi)$. In each case, begin by drawing a right triangle with sides a and b. (a) $\cos (2 t)+\sin (2 t)$. (b) $\cos (\pi t)-\sqrt{3} \sin (\pi t)$. (c) $\operatorname{Re} \frac{e^{i t}}{2+2 i}$.
4. Find a solution of $\dot{x}+2 x=e^{t}$ of the form $w e^{t}$. Do the same for $\dot{z}+2 z=e^{2 i t}$. In both cases, go on to write down the general solution.
5. Find a solution of $\dot{x}+2 x=\cos (2 t)$ by replacing it with a complex valued equation, solving that, and then extracting the real part. Your work also gives you a solution for $\dot{x}+2 x=\sin (2 t)$.

MIT OpenCourseWare
http://ocw.mit.edu
18.03 Differential Equationsㄱ ㄱ

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

