3. Laplace Transform

3A. Elementary Properties and Formulas

3A-1. Show from the definition of Laplace transform that $\mathcal{L}(t)=\frac{1}{s^{2}}, \quad s>0$.
3A-2. Derive the formulas for $\mathcal{L}\left(e^{a t} \cos b t\right)$ and $\mathcal{L}\left(e^{a t} \sin b t\right)$ by assuming the formula

$$
\mathcal{L}\left(e^{\alpha t}\right)=\frac{1}{s-\alpha}
$$

is also valid when α is a complex number; you will also need

$$
\mathcal{L}(u+i v)=\mathcal{L}(u)+i \mathcal{L}(v)
$$

for a complex-valued function $u(t)+i v(t)$.
3A-3. Find $\mathcal{L}^{-1}(F(s))$ for each of the following, by using the Laplace transform formulas. (For (c) and (e) use a partial fractions decomposition.)
a) $\frac{1}{\frac{1}{2} s+3}$
b) $\frac{3}{s^{2}+4}$
c) $\frac{1}{s^{2}-4}$
d) $\frac{1+2 s}{s^{3}}$
e) $\frac{1}{s^{4}-9 s^{2}}$

3A-4. Deduce the formula for $\mathcal{L}(\sin a t)$ from the definition of Laplace transform and the formula for $\mathcal{L}(\cos a t)$, by using integration by parts.

3A-5. a) Find $\mathcal{L}\left(\cos ^{2} a t\right)$ and $\mathcal{L}\left(\sin ^{2} a t\right)$ by using a trigonometric identity to change the form of each of these functions.
b) Check your answers to part (a) by calculating $\mathcal{L}\left(\cos ^{2} a t\right)+\mathcal{L}\left(\sin ^{2} a t\right)$. By inspection, what should the answer be?

3A-6. a) Show that $\mathcal{L}\left(\frac{1}{\sqrt{t}}\right)=\sqrt{\frac{\pi}{s}}, \quad s>0, \quad$ by using the well-known integral

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

(Hint: Write down the definition of the Laplace transform, and make a change of variable in the integral to make it look like the one just given. Throughout this change of variable, s behaves like a constant.)
b) Deduce from the above formula that $\mathcal{L}(\sqrt{t})=\frac{\sqrt{\pi}}{2 s^{3 / 2}}, s>0$.

3A-7. Prove that $\mathcal{L}\left(e^{t^{2}}\right)$ does not exist for any interval of the form $s>a$.
(Show the definite integral does not converge for any value of s.)
3A-8. For what values of k will $\mathcal{L}\left(1 / t^{k}\right)$ exist? (Write down the definition of this Laplace transform, and determine for what k it converges.)

3A-9. By using the table of formulas, find: a) $\mathcal{L}\left(e^{-t} \sin 3 t\right) \quad$ b) $\mathcal{L}\left(e^{2 t}\left(t^{2}-3 t+2\right)\right)$
3A-10. Find $\mathcal{L}^{-1}(F(s))$, if $F(s)=$
a) $\frac{3}{(s-2)^{4}}$
b) $\frac{1}{s(s-2)}$
c) $\frac{s+1}{s^{2}-4 s+5}$

3B. Derivative Formulas; Solving ODE's

3B-1. Solve the following IVP's by using the Laplace transform:
a) $y^{\prime}-y=e^{3 t}, \quad y(0)=1$
b) $y^{\prime \prime}-3 y^{\prime}+2 y=0, \quad y(0)=1, y^{\prime}(0)=1$
c) $y^{\prime \prime}+4 y=\sin t, \quad y(0)=1, y^{\prime}(0)=0$
d) $y^{\prime \prime}-2 y^{\prime}+2 y=2 e^{t}, \quad y(0)=0, y^{\prime}(0)=1$
e) $y^{\prime \prime}-2 y^{\prime}+y=e^{t}, \quad y(0)=1, y^{\prime}(0)=0$.

3B-2. Without referring to your book or to notes, derive the formula for $\mathcal{L}\left(f^{\prime}(t)\right)$ in terms of $\mathcal{L}(f(t))$. What are the assumptions on $f(t)$ and $f^{\prime}(t)$?

3B-3. Find the Laplace transforms of the following, using formulas and tables:
a) $t \cos b t$
b) $t^{n} e^{k t}$ (two ways)
c) $e^{a t} t \sin t$

3B-4. Find $\mathcal{L}^{-1}(F(s))$ if $F(s)=$ a) $\frac{s}{\left(s^{2}+1\right)^{2}} \quad$ b) $\frac{1}{\left(s^{2}+1\right)^{2}}$
3B-5. Without consulting your book or notes, derive the formulas
a) $\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a)$
b) $\mathcal{L}(t f(t))=-F^{\prime}(s)$

3B-6. If $y(t)$ is a solution to the IVP $y^{\prime \prime}+t y=0, \quad y(0)=1, y^{\prime}(0)=0$, what ODE is satisfied by the function $Y(s)=\mathcal{L}(y(t))$?
(The solution $y(t)$ is called an Airy function; the ODE it satisfies is the Airy equation.)

3C. Discontinuous Functions

$\mathbf{3 C - 1}$. Find the Laplace transforms of each of the following functions; do it as far as possible by expressing the functions in terms of known functions and using the tables, rather than by calculating from scratch. In each case, sketch the graph of $f(t)$. (Use the unit step function $u(t)$ wherever possible.)
a) $f(t)= \begin{cases}1, & 0 \leq t \leq 1 \\ -1, & 1<t \leq 2 \\ 0, & \text { otherwise }\end{cases}$
b) $f(t)= \begin{cases}t, & 0 \leq t \leq 1 \\ 2-t, & 1 \leq t \leq 2 \\ 0, & \text { otherwise }\end{cases}$
c) $f(t)=|\sin t|, \quad t \geq 0$.

3C-2. Find \mathcal{L}^{-1} for the following: a) $\frac{e^{-s}}{s^{2}+3 s+2} \quad$ b) $\frac{e^{-s}-e^{-3 s}}{s}$ (sketch answer)
3C-3. Find $\mathcal{L}(f(t))$ for the square wave $f(t)= \begin{cases}1, & 2 n \leq t \leq 2 n+1, n=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}$
a) directly from the definition of Laplace transform;
b) by expressing $f(t)$ as the sum of an infinite series of functions, taking the Laplace transform of the series term-by-term, and then adding up the infinite series of Laplace transforms.
3C-4. Solve by the Laplace transform the following IVP, where $h(t)= \begin{cases}1, & \pi \leq t \leq 2 \pi, \\ 0, & \text { otherwise }\end{cases}$

$$
y^{\prime \prime}+2 y^{\prime}+2 y=h(t), \quad y(0)=0, \quad y^{\prime}(0)=1 ;
$$

write the solution in the format used for $h(t)$.
3C-5. Solve the IVP: $\quad y^{\prime \prime}-3 y^{\prime}+2 y=r(t), \quad y(0)=1, y^{\prime}(0)=0, \quad$ where $r(t)=u(t) t$, the ramp function.

3D. Convolution and Delta Function

3D-1. Solve the IVP: $\quad y^{\prime \prime}+2 y^{\prime}+y=\delta(t)+u(t-1), \quad y(0)=0, y^{\prime}\left(0^{-}\right)=1$.
Write the answer in the "cases" format $y(t)= \begin{cases}\cdots, & 0 \leq t \leq 1 \\ \cdots, & t>1\end{cases}$
3D-2. Solve the IVP: $\quad y^{\prime \prime}+y=r(t), \quad y(0)=0, y^{\prime}(0)=1$, where $r(t)= \begin{cases}1, & 0 \leq x \leq \pi \\ 0, & \text { otherwise } .\end{cases}$
Write the answer in the "cases" format (see 3D-1 above).
3D-3. If $f(t+c)=f(t)$ for all t, where c is a fixed positive constant, the function $f(t)$ is said to be periodic, with period c. (For example, $\sin x$ is periodic, with period 2π.)
a) Show that if $f(t)$ is periodic with period c, then its Laplace transform is

$$
F(s)=\frac{1}{1-e^{-c s}} \int_{0}^{c} e^{-s t} f(t) d t
$$

b) Do Exercise 3C-3, using the above formula.

3D-4. Find \mathcal{L}^{-1} by using the convolution:
a) $\frac{s}{(s+1)\left(s^{2}+4\right)}$
b) $\frac{1}{\left(s^{2}+1\right)^{2}}$

Your answer should not contain the convolution $*$.
3D-5. Assume $f(t)=0$, for $t \leq 0$. Show informally that $\delta(t) * f(t)=f(t)$, by using the definition of convolution; then do it by using the definition of $\delta(t)$.
(See (5), section 4.6 of your book; $\delta(t)$ is written $\delta_{0}(t)$ there.)
3D-6. Prove that $f(t) * g(t)=g(t) * f(t)$ directly from the definition of convolution, by making a change of variable in the convolution integral.

3D-7. Show that the IVP: $y^{\prime \prime}+k^{2} y=r(t), \quad y(0)=0, y^{\prime}(0)=0$ has the solution

$$
y(t)=\frac{1}{k} \int_{0}^{t} r(u) \sin k(t-u) d u
$$

by using the Laplace transform and the convolution.
3D-8. By using the Laplace transform and the convolution, show that in general the IVP (here a and b are constants):

$$
y^{\prime \prime}+a y^{\prime}+b y=r(t), \quad y(0)=0, y^{\prime}(0)=0
$$

has the solution

$$
y(t)=\int_{0}^{t} w(t-u) r(u) d u
$$

where $w(t)$ is the solution to the IVP: $\quad y^{\prime \prime}+a y^{\prime}+b y=0, \quad y(0)=0, y^{\prime}(0)=1$.
(The function $w(t-u)$ is called the Green's function for the linear operator $D^{2}+a D+b$.)

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations
 []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

