LT. Laplace Transform

1. Translation formula. The usual L.T. formula for translation on the t-axis is

$$
\begin{equation*}
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s), \quad \text { where } F(s)=\mathcal{L}(f(t)), \quad a>0 . \tag{1}
\end{equation*}
$$

This formula is useful for computing the inverse Laplace transform of $e^{-a s} F(s)$, for example. On the other hand, as written above it is not immediately applicable to computing the L.T. of functions having the form $u(t-a) f(t)$. For this you should use instead this form of (1):

$$
\begin{equation*}
\mathcal{L}(u(t-a) f(t))=e^{-a s} \mathcal{L}(f(t+a)), \quad a>0 . \tag{2}
\end{equation*}
$$

Example 1. Calculate the Laplace transform of $u(t-1)\left(t^{2}+2 t\right)$.
Solution. Here $f(t)=t^{2}+2 t$, so (check this!) $f(t+1)=t^{2}+4 t+3$. So by (2),

$$
\mathcal{L}\left(u(t-1)\left(t^{2}+2 t\right)\right)=e^{-s} \mathcal{L}\left(t^{2}+4 t+3\right)=e^{-s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{3}{s}\right) .
$$

Example 2. Find $\mathcal{L}\left(u\left(t-\frac{\pi}{2}\right) \sin t\right)$.
Solution.

$$
\begin{aligned}
\mathcal{L}\left(u\left(t-\frac{\pi}{2}\right) \sin t\right) & =e^{-\pi s / 2} \mathcal{L}\left(\sin \left(t+\frac{\pi}{2}\right)\right. \\
& =e^{-\pi s / 2} \mathcal{L}(\cos t)=e^{-\pi s / 2} \frac{s}{s^{2}+1} .
\end{aligned}
$$

Proof of formula (2). According to (1), for any $g(t)$ we have

$$
\mathcal{L}(u(t-a) g(t-a))=e^{-a s} \mathcal{L}(g(t)) ;
$$

this says that to get the factor on the right side involving g, we should replace $t-a$ by t in the function $g(t-a)$ on the left, and then take its Laplace transform.

Apply this procedure to the function $f(t)$, written in the form $f(t)=f((t-a)+a)$; we get ("replacing $t-a$ by t and then taking the Laplace Transform")

$$
\mathcal{L}(u(t-a) f((t-a)+a))=e^{-a s} \mathcal{L}(f(t+a)),
$$

exactly the formula (2) that we wanted to prove.
Exercises. Find: a) $\mathcal{L}\left(u(t-a) e^{t}\right) \quad$ b) $\mathcal{L}(u(t-\pi) \cos t) \quad$ c) $\mathcal{L}\left(u(t-2) t e^{-t}\right)$

Solutions.
a) $e^{-a s} \frac{e^{a}}{s-1}$
b) $-e^{-\pi s} \frac{s}{s^{2}+1}$
c) $e^{-2 s} \frac{e^{-2}(2 s+3)}{(s+1)^{2}}$

2. The transfer function and Green's function.

If we use the Laplace transform to solve the IVP

$$
y^{\prime \prime}+a y^{\prime}+b y=r(t), \quad y(0)=0, y^{\prime}(0)=0
$$

the transform of the IVP, with the usual notation, is

$$
s^{2} Y+a s Y+b Y=R(s)
$$

whose solution for $Y=\mathcal{L}^{-1}(y)$ is

$$
Y=R(s) \frac{1}{s^{2}+a s+b}
$$

using the convolution operator to take the inverse transform, we get as the solution (further down the function $w(t)$ is defined):

$$
\begin{equation*}
y=r(t) * w(t)=\int_{0}^{t} r(u) w(t-u) d u \tag{3}
\end{equation*}
$$

In this form of the solution, the following terminology is often used. Let $p(D)=D^{2}+a D+b$ be the differential operator; then we write

$$
\begin{aligned}
W(s) & =\frac{1}{s^{2}+a s+b} & & \text { the transfer function for } p(D) \\
w(t) & =\mathcal{L}^{-1}(W(s)) & & \text { the weight function for } p(D) \\
G(t, u) & =w(t-u) & & \text { the Green's function for } p(D)
\end{aligned}
$$

The important thing to note is that each of these depends only on the operator, not on the forcing function $r(t)$; once they are calculated, the solution (3) to the IVP can be written down immediately as the definite integral there, and used for a variety of different $r(t)$.

The weight function $w(t)$ can be thought of as the unique solution to the IVP

$$
\begin{equation*}
y^{\prime \prime}+a y^{\prime}+b y=0 ; \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{4}
\end{equation*}
$$

or as the solution to the IVP

$$
\begin{equation*}
y^{\prime \prime}+a y^{\prime}+b y=\delta(t) ; \quad y(0)=0, \quad y^{\prime}\left(0^{-}\right)=0 \tag{5}
\end{equation*}
$$

in the second equation, $\delta(t)$ is the Dirac delta function. Both IVP's model (for $a, b>0$) a damped spring-mass system which is initially at rest, but whose mass is given a unit impulse at time zero, say by a sharp blow.

It is an easy exercise to show that $w(t)$ is the solution to both IVP's. As an example of Green's functions, see the last few Laplace Transform exercises (in Section 3D).

MIT OpenCourseWare
http://ocw.mit.edu

18.03 Differential Equations ㄴ

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

