18.034 PRACTICE EXAM 3, SPRING 2004

Problem 1 Let A be a 2×2 real matrix and consider the linear system of first order differential equations,

$$
\mathbf{y}^{\prime}(t)=A \mathbf{y}(t), \quad \mathbf{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right] .
$$

Let α, β be fixed real numbers, and let M_{1}, M_{2} be fixed 2×2 matrices with real entries. Suppose that the general solution of the linear system is,

$$
\mathbf{y}(t)=\left(k_{1} M_{1}+k_{2} M_{2}\right)\left[\begin{array}{c}
e^{\alpha t} \cos (\beta t) \\
e^{\alpha t} \sin (\beta t)
\end{array}\right],
$$

where k_{1}, k_{2} are arbitrary real numbers.
(a) Prove that M_{1} and M_{2} each satisfy the following equation,

$$
A M_{i}=M_{i} D, \quad D=\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]
$$

(b) Consider the linear system of differential equations,

$$
\mathbf{z}^{\prime}(t)=A^{2} \mathbf{z}(t), \mathbf{z}(t)=\left[\begin{array}{c}
z_{1}(t) \\
z_{2}(t)
\end{array}\right]
$$

Use (a) to show that for every pair of real numbers k_{1}, k_{2}, the following function is a solution of the linear system,

$$
\mathbf{z}(t)=\left(k_{1} M_{1}+k_{2} M_{2}\right)\left[\begin{array}{c}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right] .
$$

Problem 2 Consider the following inhomogeneous $2^{\text {nd }}$ order linear differential equation,

$$
\left\{\begin{array}{c}
y^{\prime \prime}-y=1 \\
y(0)=y_{0} \\
y^{\prime}(0)=v_{0}
\end{array}\right.
$$

Denote by $Y(s)$ the Laplace transform,

$$
Y(s)=\mathcal{L}[y(t)]=\int_{0}^{\infty} e^{-s t} y(t) d t
$$

(a) Find an expression for $Y(s)$ as a sum of ratios of polynomials in s.
(b) Determine the partial fraction expansion of $Y(s)$.
(c) Determine $y(t)$ by computing the inverse Laplace transform of $Y(s)$.

Problem 3 The general skew-symmetric real 2×2 matrix is,

$$
A=\left[\begin{array}{cc}
0 & b \\
-b & 0
\end{array}\right]
$$

where b is a real number. Prove that the eigenvalues of A of the form $\lambda= \pm i \mu$ for some real number μ. Find all values of b such that there is a single repeated eigenvalue.

Problem 4 Let λ be a real number and let A be the following 3×3 matrix,

$$
A=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]
$$

Let a_{1}, a_{2}, a_{3} be real numbers. Consider the following initial value problem,

$$
\left\{\begin{array}{l}
\mathbf{y}^{\prime}(t)=A \mathbf{y}(t), \\
\mathbf{y}(0)=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
\end{array}\right.
$$

Denote by $\mathbf{Y}(s)$ the Laplace transform of $\mathbf{y}(t)$, i.e.,

$$
\mathbf{Y}(s)=\left[\begin{array}{l}
Y_{1}(s) \\
Y_{2}(s) \\
Y_{3}(s)
\end{array}\right], \quad Y_{i}(s)=\mathcal{L}\left[y_{i}(t)\right], i=1,2,3
$$

(a) Express both $\mathcal{L}\left[\mathbf{y}^{\prime}(t)\right]$ and $\mathcal{L}[A \mathbf{y}(t)]$ in terms of $\mathbf{Y}(s)$.
(b) Using part (a), find an equation that $\mathbf{Y}(s)$ satisfies, and iteratively solve the equation for $Y_{3}(s)$, $Y_{2}(s)$ and $Y_{1}(s)$, in that order.
(c) Determine $\mathbf{y}(t)$ by applying the inverse Laplace transform to $Y_{1}(s), Y_{2}(s)$ and $Y_{3}(s)$.

Problem 5 For each of the following matrices A, compute the following,
(i) $\operatorname{Trace}(A)$,
(ii) $\operatorname{det}(A)$,
(iii) the characteristic polynomial $p_{A}(\lambda)=\operatorname{det}(\lambda I-A)$,
(iv) the eigenvalues of A (both real and complex), and
(v) for each eigenvalue λ a basis for the space of λ-eigenvectors.
(a) The 2×2 matrix with real entries,

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Hint: See Problem 3.
(b) The 3×3 matrix with real entries,

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 5 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

