18.034 SOLUTIONS TO PRACTICE EXAM 3, SPRING 2004

Problem 1 Let A be a 2×2 real matrix and consider the linear system of first order differential equations,

$$
\mathbf{y}^{\prime}(t)=A \mathbf{y}(t), \quad \mathbf{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right] .
$$

Let α be a real number, let β be a nonzero real number, and let M_{1}, M_{2} be 2×2 matrices with real entries. Suppose that the general solution of the linear system is,

$$
\mathbf{y}(t)=\left(k_{1} M_{1}+k_{2} M_{2}\right)\left[\begin{array}{c}
e^{\alpha t} \cos (\beta t) \\
e^{\alpha t} \sin (\beta t)
\end{array}\right],
$$

where k_{1}, k_{2} are arbitrary real numbers.
(a) Prove that M_{1} and M_{2} each satisfy the following equation,

$$
A M_{i}=M_{i} D, \quad D=\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]
$$

Solution: By assumption,

$$
A M_{i}\left[\begin{array}{c}
e^{\alpha t} \cos (\beta t) \\
e^{\alpha t} \sin (\beta t)
\end{array}\right]=M_{i} \frac{d}{d t}\left[\begin{array}{l}
e^{\alpha t} \cos (\beta t) \\
e^{\alpha t} \sin (\beta t)
\end{array}\right] .
$$

And,

$$
\frac{d}{d t}\left[\begin{array}{c}
e^{\alpha t} \cos (\beta t) \\
e^{\alpha t} \sin (\beta t)
\end{array}\right]=\left[\begin{array}{c}
\alpha e^{\alpha t} \cos (\beta t)-\beta e^{\alpha t} \sin (\beta t) \\
\alpha e^{\alpha t} \sin (\beta t)+\beta e^{\alpha t} \sin (\beta t)
\end{array}\right]=\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]\left[\begin{array}{c}
e^{\alpha t} \cos (\beta t) \\
e^{\alpha t} \sin (\beta t)
\end{array}\right] .
$$

Therefore, for each real number t,

$$
\left(A M_{i}-M_{i} D\right)\left[\begin{array}{l}
e^{\alpha t} \cos (\beta t) \\
e^{\alpha t} \sin (\beta t)
\end{array}\right]=0
$$

But for $t=0$ and $t=\pi /(2 \beta)$, the vectors give a basis for \mathbb{R}^{2}. Therefore $A M_{i}-M_{i} D=0$.
(b) Consider the linear system of differential equations,

$$
\mathbf{z}^{\prime}(t)=A^{2} \mathbf{z}(t), \mathbf{z}(t)=\left[\begin{array}{c}
z_{1}(t) \\
z_{2}(t)
\end{array}\right] .
$$

Use (a) to show that for every pair of real numbers k_{1}, k_{2}, the following function is a solution of the linear system,

$$
\mathbf{z}(t)=\left(k_{1} M_{1}+k_{2} M_{2}\right)\left[\begin{array}{l}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right] .
$$

Solution: Because $A M_{i}=M_{i} D$, also

$$
A^{2} M_{i}=A\left(A M_{i}\right)=A\left(M_{i} D\right)=\left(A M_{i}\right) D=\left(M_{i} D\right) D=M_{i} D^{2} .
$$

Now,

$$
D^{2}=\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]=\left[\begin{array}{cc}
\alpha^{2}-\beta^{2} & -2 \alpha \beta \\
2 \alpha \beta & \alpha^{2}-\beta^{2}
\end{array}\right] .
$$

Date: Spring 2004.

And,

$$
\frac{d}{d t}\left[\begin{array}{c}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right]=\left[\begin{array}{cc}
\alpha^{2}-\beta^{2} & -2 \alpha \beta \\
2 \alpha \beta & \alpha^{2}-\beta^{2}
\end{array}\right]\left[\begin{array}{c}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right] .
$$

Thus,

$$
\frac{d}{d t} M_{i}\left[\begin{array}{c}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right]=M_{i} D^{2}\left[\begin{array}{c}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right]=A^{2} M_{i}\left[\begin{array}{c}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right]
$$

Therefore, for each pair of real numbers k_{1}, k_{2},

$$
\frac{d}{d t}\left(k_{1} M_{1}+k_{2} M_{2}\right)\left[\begin{array}{c}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right]=A^{2}\left(k_{1} M_{1}+k_{2} M_{2}\right)\left[\begin{array}{c}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right],
$$

i.e.,

$$
\mathbf{z}(t)=\left(k_{1} M_{1}+k_{2} M_{2}\right)\left[\begin{array}{c}
e^{\left(\alpha^{2}-\beta^{2}\right) t} \cos (2 \alpha \beta t) \\
e^{\left(\alpha^{2}-\beta^{2}\right) t} \sin (2 \alpha \beta t)
\end{array}\right],
$$

is a solution of $\mathbf{z}^{\prime}(t)=A^{2} \mathbf{z}(t)$.
Problem 2 Consider the following inhomogeneous $2^{\text {nd }}$ order linear differential equation,

$$
\left\{\begin{array}{c}
y^{\prime \prime}-y=1 \\
y(0)=y_{0} \\
y^{\prime}(0)=v_{0}
\end{array}\right.
$$

Denote by $Y(s)$ the Laplace transform,

$$
Y(s)=\mathcal{L}[y(t)]=\int_{0}^{\infty} e^{-s t} y(t) d t
$$

(a) Find an expression for $Y(s)$ as a sum of ratios of polynomials in s.

Solution: By rules of the Laplace transform, $\mathcal{L}\left[y^{\prime}(t)\right]=s Y(s)-y_{0}$ and $\mathcal{L}\left[y^{\prime \prime}(t)\right]=s^{2} Y(s)-s y_{0}-v_{0}$. Therefore,

$$
\left(s^{2} Y(s)-s y_{0}-v_{0}\right)-Y(s)=\mathcal{L}\left[y^{\prime \prime}-y\right]=\mathcal{L}[1]=\frac{1}{s}
$$

Gathering terms and simplifying,

$$
(s-1)(s+1) Y(s)=\left(s^{2}-1\right) Y(s)=v_{0}+s y_{0}+\frac{1}{s} .
$$

Therefore,

$$
Y(s)=\frac{s^{2} y_{0}+s v_{0}+1}{(s+1) s(s-1)}
$$

(b) Determine the partial fraction expansion of $Y(s)$.

Solution: Because each factor in the denominator is a linear factor with multiplicity 1 , the Heaviside cover-up method determines all the coefficients,

$$
\frac{s^{2} y_{0}+s v_{0}+1}{(s+1) s(s-1)}=\frac{y_{0}-v_{0}+1}{2} \frac{1}{s+1}+(-1) \frac{1}{s}+\frac{y_{0}+v_{0}+1}{2} \frac{1}{s-1} .
$$

(c) Determine $y(t)$ by computing the inverse Laplace transform of $Y(s)$.

Solution: The inverse Laplace transform of $1 /(s-a)$ is $e^{a t}$. Therefore,

$$
y(t)=\mathcal{L}^{-1}[Y(s)]=\frac{y_{0}-v_{0}+1}{2} e^{-t}-1+\frac{y_{0}+v_{0}+1}{2} e^{t}=-1+\left(y_{0}+1\right) \cosh (t)+v_{0} \sinh (t) .
$$

Problem 3 The general skew-symmetric real 2×2 matrix is,

$$
A=\left[\begin{array}{cc}
0 & b \\
-b & 0
\end{array}\right]
$$

where b is a real number. Prove that the eigenvalues of A of the form $\lambda= \pm i \mu$ for some real number μ. Determine μ and find all values of b such that there is a single repeated eigenvalue.
Solution: The trace is $\operatorname{Trace}(A)=0$, and the determinant is $\operatorname{det}(A)=0-\left(-b^{2}\right)=b^{2}$. Therefore the characteristic polynomial is

$$
p_{A}(\lambda)=\lambda^{2}-\operatorname{Trace}(A) \lambda+\operatorname{det}(A)=\lambda^{2}+b^{2} .
$$

Therefore the eigenvalues of A are $\pm i b$. There is a repeated eigenvalue iff $b=0$.
There is a more involved proof that for every positive integer n, for every skew-symmetric real $n \times n$ matrix A, every eigenvalue of A is purely imaginary. The idea is that on \mathbb{C}^{n} there is a Hermitian inner product, which assigns to each pair of vectors,

$$
\mathbf{z}=\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]
$$

the complex number,

$$
\langle\mathbf{z}, \mathbf{w}\rangle=z_{1} \bar{w}_{1}+\cdots+z_{n} \bar{w}_{n} .
$$

Observe this has the properties,

$$
\begin{aligned}
&\left\langle\mathbf{z}_{1}+\mathbf{z}_{2}, \mathbf{w}\right\rangle=\left\langle\mathbf{z}_{1}, \mathbf{w}\right\rangle+\left\langle\mathbf{z}_{2}, \mathbf{w}\right\rangle, \\
&\left\langle\mathbf{z}, \mathbf{w}_{1}+\mathbf{w}_{2}\right\rangle=\left\langle\mathbf{z}, \mathbf{w}_{1}\right\rangle+\left\langle\mathbf{z}, \mathbf{w}_{2}\right\rangle, \\
&\langle\lambda \mathbf{z}, \mathbf{w}\rangle=\lambda\langle\mathbf{z}, \mathbf{w}\rangle, \\
&\langle\mathbf{z}, \lambda \mathbf{w}\rangle=\bar{\lambda}\langle\mathbf{z}, \mathbf{w}\rangle, \\
&\langle\mathbf{w}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{w}\rangle,} \\
&\langle\mathbf{z}, \mathbf{z}\rangle \neq 0, \quad \text { if } \mathbf{z} \neq 0 .
\end{aligned}
$$

Because A is a real skew-symmetric matrix, for every pair of vectors \mathbf{z}, \mathbf{w} the following equation holds,

$$
\langle A \mathbf{z}, \mathbf{w}\rangle=-\langle\mathbf{z}, A \mathbf{w}\rangle .
$$

Suppose that $\lambda \in \mathbb{C}$ is an eigenvalue and let \mathbf{z} be a (nonzero) λ-eigenvalue. Then,

$$
\lambda\langle\mathbf{z}, \mathbf{z}\rangle=\langle\lambda \mathbf{z}, \mathbf{z}\rangle=\langle A \mathbf{z}, \mathbf{z}\rangle=-\langle\mathbf{z}, A \mathbf{z}\rangle=-\langle\mathbf{z}, \lambda \mathbf{z}\rangle=-\bar{\lambda}\langle\mathbf{z}, \mathbf{z}\rangle .
$$

Because \mathbf{z} is nonzero, $\langle\mathbf{z}, \mathbf{z}\rangle$ is nonzero. Therefore $\lambda=-\bar{\lambda}$, which implies that λ is a pure imaginary number.
Problem 4 Let λ be a real number and let A be the following 3×3 matrix,

$$
A=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]
$$

Let a_{1}, a_{2}, a_{3} be real numbers. Consider the following initial value problem,

$$
\left\{\begin{array}{c}
\mathbf{y}^{\prime}(t)=A \mathbf{y}(t), \\
\mathbf{y}(0)=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
\end{array}\right.
$$

Denote by $\mathbf{Y}(s)$ the Laplace transform of $\mathbf{y}(t)$, i.e.,

$$
\mathbf{Y}(s)=\left[\begin{array}{c}
Y_{1}(s) \\
Y_{2}(s) \\
Y_{3}(s)
\end{array}\right], \quad Y_{i}(s)=\mathcal{L}\left[y_{i}(t)\right], i=1,2,3
$$

(a) Express both $\mathcal{L}\left[\mathbf{y}^{\prime}(t)\right]$ and $\mathcal{L}[A \mathbf{y}(t)]$ in terms of $\mathbf{Y}(s)$.

Solution: First of all,

$$
\mathcal{L}\left[\mathbf{y}^{\prime}(t)\right]=s \mathbf{Y}(s)-\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] .
$$

Secondly,

$$
\mathcal{L}[A \mathbf{y}(t)]=A \mathbf{Y}(s) .
$$

(b) Using part (a), find an equation that $\mathbf{Y}(s)$ satisfies, and iteratively solve the equation for $Y_{3}(s)$, $Y_{2}(s)$ and $Y_{1}(s)$, in that order.
Solution: By part (a),

$$
s \mathbf{Y}(s)-\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=A \mathbf{Y}(s) .
$$

Written out, this is equivalent to the system of 3 equations,

$$
\left\{\begin{array}{l}
(s-\lambda) Y_{1}(s)=a_{1}+Y_{2}(s) \\
(s-\lambda) Y_{2}(s)=a_{2}+Y_{3}(s) \\
(s-\lambda) Y_{3}(s)=a_{3}
\end{array}\right.
$$

Solving this iteratively,

$$
\begin{gathered}
Y_{3}(s)=\frac{a_{3}}{s-\lambda} \\
Y_{2}(s)=\frac{a_{2}}{s-\lambda}+\frac{1}{s-\lambda} Y_{3}(s)=\frac{a_{2}}{s-\lambda}+\frac{a_{3}}{(s-\lambda)^{2}}
\end{gathered}
$$

and,

$$
Y_{1}(s)=\frac{a_{1}}{s-\lambda}+\frac{1}{s-\lambda} Y_{2}(s)=\frac{a_{1}}{s-\lambda}+\frac{a_{2}}{(s-\lambda)^{2}}+\frac{a_{3}}{(s-\lambda)^{3}} .
$$

(c) Determine $\mathbf{y}(t)$ by applying the inverse Laplace transform to $Y_{1}(s), Y_{2}(s)$ and $Y_{3}(s)$.

Solution: The relevant inverse Laplace transforms are,

$$
\begin{aligned}
\mathcal{L}^{-1}[1 /(s-\lambda)] & =e^{\lambda t} \\
\mathcal{L}^{-1}\left[1 /(s-\lambda)^{2}\right] & =t e^{\lambda t} \\
\mathcal{L}^{-1}\left[1 /(s-\lambda)^{3}\right] & =\frac{1}{2} t^{2} e^{\lambda t}
\end{aligned}
$$

Therefore,

$$
\left\{\begin{array}{l}
y_{1}(t)=a_{1} e^{\lambda t}+a_{2} t e^{\lambda t}+a_{3} \frac{1}{2} t^{2} e^{\lambda t}, \\
y_{2}(t)= \\
a_{2} e^{\lambda t}+a_{3} t e^{\lambda t}, \\
y_{3}(t)=
\end{array}\right.
$$

In matrix form, this is,

$$
\mathbf{y}(t)=a_{1} e^{\lambda t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+a_{2} e^{\lambda t}\left[\begin{array}{l}
t \\
1 \\
0
\end{array}\right]+a_{3} e^{\lambda t}\left[\begin{array}{c}
\frac{t^{2}}{2} \\
t \\
1
\end{array}\right] .
$$

Problem 5 For each of the following matrices A, compute the following,
(i) $\operatorname{Trace}(A)$,
(ii) $\operatorname{det}(A)$,
(iii) the characteristic polynomial $p_{A}(\lambda)=\operatorname{det}(\lambda I-A)$,
(iv) the eigenvalues of A (both real and complex), and
(v) for each eigenvalue λ a basis for the space of λ-eigenvectors.
(a) The 2×2 matrix with real entries,

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Hint: See Problem 3.
Solution: In Problem 3, we computed $\operatorname{Trace}(A)=0, \operatorname{det}(A)=1, p_{A}(\lambda)=\lambda^{2}+1$, and the eigenvalues are $\lambda_{ \pm}= \pm i$. For the eigenvalue $\lambda_{+}=i$, denote an eigenvector by,

$$
\mathbf{v}_{+}=\left[\begin{array}{l}
v_{+, 1} \\
v_{+, 2}
\end{array}\right]
$$

Then $-v_{+, 2}=i v_{+, 1}$, e.g., $v_{+, 1}=1, v_{+, 2}=-i$. Therefore an eigenvector for $\lambda_{+}=i$ is,

$$
\mathbf{v}_{+}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

Similarly, an eigenvector for $\lambda_{-}=-i$ is,

$$
\mathbf{v}_{-}=\left[\begin{array}{l}
1 \\
i
\end{array}\right]
$$

(b) The 3×3 matrix with real entries,

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 5 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Solution: Because this is an upper triangular matrix, clearly Trace $(A)=3+5+3=11$, $\operatorname{det}(A)=$ $3 \times 5 \times 3=45$, and $p_{A}(\lambda)=(\lambda-3)(\lambda-5)(\lambda-3)=\lambda^{3}-11 \lambda+39 \lambda-45$. The eigenvalues are $\lambda_{1}=5$ and $\lambda_{2}=3$ (the eigenvalue 3 has multiplicity 2).

For the eigenvalue $\lambda_{1}=5$, the eigenvectors are the nonzero nullvectors of the matrix,

$$
A-5 I=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

Either by using row operations to put this matrix in row echelon form, or by inspection, a basis for the nullspace is,

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

For the eigenvalue $\lambda_{2}=3$, the eigenvectors are the nonzero nullvectors of the matrix,

$$
A-3 I=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

In this case, a basis for the nullspace is,

$$
\mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

