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Structural Stability 

In the previous Note, we described how to get a rough picture of the 
trajectories of a non-linear system by linearizing at each of its critical points. 
The basic assumption of the method is that the linearized system will be a 
good approximation to the original non-linear system if you stay near the 
critical point. 

The method only works however if the linearized system turns out to be 
a node, saddle, or spiral. What is it about these geometric types that allows 
the method to work, and why won’t it work if the linearized system turns 
out to be one of the other possibilities (dismissed as “borderline types” in 
the previous section)? 

Briefly, the answer is that nodes, saddles, and spirals are structurally 
stable, while the other possibilities are not. We call a system 

x� = f (x, y)

y� = g(x, y) (1)


Structurally Stability: We say a system is structural if small changes in 
the system parameters (i.e., the constants that enter into the functions on 
the right hand side) do not change the geometric type or stability of its 
critical points (or its limit cycles, which will be defined in a later session 
-don’t worry about them for now). 

Theorem. The 2 × 2 autonomous linear system 

x� = ax + by

y� = cx + dy 

(2)


is structurally stable if it is a spiral, saddle, or node (but not a degenerate or star 
node). 

Proof. The characteristic equation is 

λ2 − (a + d)λ + (ad − bc) = 0, 

and its roots (the eigenvalues) are 

λ1, λ2 =
(a + d) ± (a + d)2 − 4(ad − bc) 

. (3)
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Let’s look at the cases one-by-one; assume first that the roots λ1 and 
λ2 are real and distinct. The possibilities in the theorem are given by the 
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following (note that since the roots are distinct, the node will not be degen
erate or a star node): 

λ1 > 0, λ2 > 0 unstable node 
λ1 < 0, λ2 < 0 asymptotically stable node 
λ1 > 0, λ2 < 0 unstable saddle. 

The quadratic formula (3) shows that the roots depend continuously on 
the coefficients a, b, c, d. Thus if the coefficients are changed a little, the 
roots ł1 and ł2 will also be changed a little to ł�1 and ł2

� respectively; the new 
roots will still be real, and will have the same sign if the change is small 
enough. Thus the changed system will still have the same geometric type 
and stability. � 

If the roots of the characteristic equation are complex, the reasoning is 
similar. Let us denote the complex roots by r ± si; we use the root ł = 
r + si, s > 0; then the possibilities to be considered for structural stability 
are 

r > 0, s > 0 unstable spiral

r < 0, s > 0 asymptotically stable spiral.


If a, b, c, d are changed a little, the root is changed to ł� = r� + s�i, where 
r� and s� are close to r and s respectively, since the quadratic formula (3) 
shows r and s depend continuously on the coefficients. If the change is 
small enough, r� will have the same sign as r and s� will still be positive, 
so the geometric type of the changed system will still be a spiral, with the 
same stability type. �� 

Structural Stability of a non-linear system 
Theorem: For an autonomous non-linear system, the linearized system 
correctly classifies the crititcal point if the linear system is a spiral node, a 
nodal source or sink or a saddle. 

It may not however correctly classify a center, defective node, star node or 
non-isolated critical point. That is, it is correct in open regions of the trace-
determinant diagram and untrustworthy on the boundary lines. 
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Trace-determinant diagram 
Idea: small changes in the eigenvalues don’t move far in trace⇒

determinant diagram. 
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