Linear models

[A mixing problem]

1. A tank holds *V* liters of salt water. Suppose that a saline solution with concentration of *c* grams/liter is added at the rate of *r* liters/minute. A mixer keeps the salt essentially uniformly distributed in the tank. A pipe lets solution out of the tank at the same rate of *r* liters/minute. Write down the differential equation for the *amount* (not the concentration!) of salt in the tank. Use the notation x(t) for the number of grams of salt in the tank at time *t*. Check the units in your equation. Write it in standard linear form.

2. Now assume that *c* and *r* are constant. In fact, suppose that r = 2 liters/minute and the volume of the tank is V = 1 liter. Solve this equation under the assumption that x(0) = 0.

What is the limiting amount of salt in the tank? Does your result make sense by simple logic? When will the tank contain half that amount?

3. Now suppose that the outflow from this tank leads into another tank, also of volume 1, and that at time t = 1 the water in this second tank contains no salt. Again there is a mixer and an outflow. Write down a differential equation for the amount of salt in the second tank, as a function of time.

[A circuits problem]

4. Draw a picture of a circuit with a voltage source, a resistor, and a capacitor, in series. Denote by I(t) the current in the circuit, where the positive direction is, say, clockwise, and by V(t) the voltage increase across the voltage source, at time t. Denote by R the resistance of the resistor and C the capacitance of the capacitor (in units which we will not specify)—both positive numbers. Then

$$R\frac{dI}{dt} + \frac{1}{C}I = \frac{dV}{dt}$$

Suppose that *V* is constant, $V(t) = V_0$. Solve for I(t), with initial condition I(0).

It is common to write the solution in the form $ce^{-t/\tau}$. Calculate *c* and τ . Note that τ is measured in the same units as *t* (in order for the exponent to be dimensionless). It is called the *characteristic time* for the system. What is $I(t + \tau)$ in terms of I(t)?

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.