## Part II Problems and Solutions

Problem 1: [Laplace transform] (a) Suppose that $F(s)$ is the Laplace transform of $f(t)$, and let $a>0$. Find a formula for the Laplace transform of $g(t)=f(a t)$ in terms of $F(s)$, by using the integral definition and making a change of variable. Verify your formula by using formulas and rules to compute both $\mathcal{L}(f(t))$ and $\mathcal{L}(f($ at $))$ with $f(t)=t^{n}$.
(b) Use your calculus skills: Show that if $h(t)=f(t) * g(t)$ then $H(s)=F(s) G(s)$. Do this by writing $F(s)=\int_{0}^{\infty} f(x) e^{-s x} d x$ and $G(s)=\int_{0}^{\infty} g(y) e^{-s y} d y$; expressing the product as a double integral; and changing coordinates using $x=t-\tau, y=\tau$.
(c) Use the integral definition to find the Laplace transform of the function $f(t)$ with $f(t)=$ 1 for $0<t<1$ and $f(t)=0$ for $t>0$. What is the region of convergence of the integral?

Solution: (a) $G(s)=\int_{0}^{\infty} f(a t) e^{-s t} d t$. To make this look more like $F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$, make the substitution $u=a t$. Then $d u=a d t$ and

$$
G(s)=\int_{0}^{\infty} f(u) e^{-s u / a} \frac{d u}{a}=\frac{1}{a} \int_{0}^{\infty} f(u) e^{-(s / a) u} d u=\frac{1}{a} F\left(\frac{s}{a}\right) .
$$

For example, take $f(t)=t^{n}$, so $F(s)=\frac{n!}{s^{n+1}}, g(t)=(a t)^{n}=a^{n} t^{n}, G(s)=\frac{a^{n} n!}{s^{n+1}}$. Now compute $\frac{1}{a} F\left(\frac{s}{a}\right)=\frac{1}{a} \frac{n!}{(s / a)^{n+1}}=\frac{a^{n+1}}{a} \frac{n!}{s^{n+1}}=\frac{a^{n} n!}{s^{n+1}}=G(s)$.
(b) Compute $F(s) G(s)=\int_{0}^{\infty} \int_{0}^{\infty} f(x) e^{-s x} g(y) e^{-s y} d x d y=\iint_{R} f(x) g(y) e^{-s(x+y)} d x d y$,
where $R$ is the first quadrant. We can use the substitution is $x=t-\tau, y=\tau$. To convert to these coordinates, note that the Jacobian is $\operatorname{det}\left[\begin{array}{cc}\frac{\partial x}{\partial t} & \frac{\partial x}{\partial \tau} \\ \frac{\partial y}{\partial t} & \frac{\partial y}{\partial \tau}\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=1$ For fixed $t, \tau$ ranges over numbers between 0 and $t$, and $t$ ranges over positive numbers. Since $x+y=t, F(s) G(s)=\int_{0}^{\infty} \int_{0}^{t} f(t-\tau) g(\tau) e^{-s t} d \tau d t$
$=\int_{0}^{\infty}\left(\int_{0}^{t} f(t-\tau) g(\tau) d \tau\right) e^{-s t} d t=\int_{0}^{\infty}(f(t) * g(t)) e^{-s t} d t=\int_{0}^{\infty} h(t) e^{-s t} d t=H(s)$.
(c) $F(s)=\int_{0}^{\infty} f(t) e^{-s t} d \tau=\int_{0}^{1} f(t) e^{-s t} d \tau+\int_{1}^{\infty} 0 e^{-s t} d \tau$. The improper integral converges for any $s$; the region of convergence is the whole complex plane. Continuing, $F(s)=\left.\frac{1}{-s} e^{-s t}\right|_{0} ^{1}=\frac{1-e^{-s}}{s}$.
[Why doesn't this blow up when $s \rightarrow 0$ ? The numerator goes to zero too, then, and the limit of the quotient (by l'Hopital for example) is 1.]

MIT OpenCourseWare
http://ocw.mit.edu

### 18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

