18.03SC Unit 1 Exam

1. (a) In a perfect environment, the population of Norway rat that breeds on the MIT campus increases by a factor of $e \simeq 2.718281828459045 \ldots$ each year. Model this natural growth by a differential equation.
What is the growth rate k ?
(b) MIT is a limited environment, with a maximal sustainable Norway rat population of $R=1000$ rats. Write down the logistic equation modeling this. (You may use " k " for the natural growth rate here if you failed to find it in (a).)
(c) The MIT pest control service intends to control these rats by killing them at a constant rate of a rats per year. If it wants to limit the rat population to 75% of the maximal sustainable population, what rate a it should aim for (in rats per year)?
2. For the autonomous equation $\dot{x}=x(x-1)(x+2)$, please sketch:
(a) the phase line, identifying the critical points and whether they are stable, unstable, or neither.
(b) at least one solution of each basic type (so that every solution is a time-translate of one you have drawn)

Below is a diagram of a direction field of the differential equation $y^{\prime}=(1 / 4)\left(x-y^{2}\right)$. On it please plot and label:
(c) the nullcline
(d) at least two quite different solutions
(e) the separatrix (if there is one)
(f) True or false: If $y(x)$ is a solution with a minimum, then for all large enough $x, y(x)<$ [3] \sqrt{x}. (No explanation needed: just circle one.)

3. (a) Use Euler's method with stepsize $h=1 / 2$ to estimate the value at $x=3 / 2$ of the [10] solution to $y^{\prime}=x+y$ such $y(0)=1$.
(b) Find the solution of $t \dot{x}+x=\cos t$ such that $x(\pi)=1$.
4. (a) Find real a, b such that $\frac{1}{3+2 i}=a+b i$.
(b) Find real r, θ such that $1-i=r e^{i \theta}$.
(c) Find real a, b such that $(1-i)^{8}=a+b i$.
(d) Find real a, b such that $b>0$ and $a+b i$ is a cube root of -1 .
(e) Find real a, b such that $e^{\ln 2+i \pi}=a+b i$.
(f) Write $f(t)=2 \cos (4 t)-2 \sin (4 t)$ in the form $A \cos (\omega t-\phi)$.
5. (a) Find a particular solution to the equation $\dot{x}+3 x=e^{2 t}$.
(b) Find the solution to the same equation such that $x(0)=1$.
(c) Write down a linear equation with exponential right hand side of which $\dot{x}+3 x=\cos (2 t)$ is the real part.
(d) Find a particular solution to the equation $\dot{x}+3 x=\cos (2 t)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

