18.03SC Practice Problems 6

Complex numbers

1. Mark $z = 1 + \sqrt{3}i$ on the complex plane. What are its polar coordinates? Then mark z^n for n = 1, 2, 3, 4. What is each in the form a + bi? What is each one in the form $Ae^{i\theta}$? Then mark z^n for n = 0, -1, -2, -3, -4.

2. Find a complex number a + bi such that $e^{a+bi} = 1 + \sqrt{3}i$. In fact, find all such complex numbers. For definiteness, fix *b* to be positive but as small as possible. (This is probably the first one you thought of.) What is $e^{n(a+bi)}$ for n = 1, 2, 3, 4? (Hint: $e^{n(a+bi)} = (e^{a+bi})^n$.) How about for n = 0, -1, -2, -3, -4?

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.