Part I Problems and Solutions

Problem 1: Change to polar form: a) -1+ib) $\sqrt{3}-i$

Solution:

a)
$$-1 + i = \sqrt{2}e^{i3\pi/4}$$
 b) $\sqrt{3} - i = 2e^{-i\pi/6}$

Problem 2: Express $\frac{1-i}{1+i}$ in the form a + bi via two methods: one using the Cartesian form throughout, and one changing numerator and denominator to polar form. Show the two answers agree.

Solution: Using Cartesian form:

$$\frac{1-i}{1+i} = \frac{(1-i)^2}{(1+i)(1-i)} = \frac{-2i}{2} = -i$$

Other way:

$$1 - i = \sqrt{2}e^{-i\pi/4}$$

$$1 + i = \sqrt{2}e^{i\pi/4}$$

$$\frac{1 - i}{1 + i} = \frac{\sqrt{2}}{\sqrt{2}} \cdot e^{(-\pi/4 - \pi/4)i}$$

$$= e^{-i\pi/2} = -i$$

Problem 3: Calculate each of the following two ways: first by using the binomial theorem and second by changing to polar form and using DeMoivre's formula:

a) $(1-i)^4$ b) $(1+i\sqrt{3})^3$

Solution:

a)
$$(1-i)^4 = 1 + 4(-i) + 6(-i)^2 + 4(-i)^3 + (-i)^4$$

= 1 - 6 + 1 + i(-4 + 4) = -4

By DeMoivre:

$$1 - i = \sqrt{2}e^{-i\pi/4}$$
$$(1 - i)^4 = (\sqrt{2})^4 e^{-i\pi} = 4 \cdot (-1) = -4$$

b)
$$(1+i\sqrt{3})^3 = 1 + 3(i\sqrt{3}) + 3(i\sqrt{3})^2 + (i\sqrt{3})^3$$

= $1 + 3i\sqrt{3} + 3 \cdot (-3) + i^3 3\sqrt{3}$
= $-8 + i(3\sqrt{3} - 3\sqrt{3}) = -8$

By DeMoivre:

$$1 + i\sqrt{3} = 2e^{i\pi/3}$$
$$(1 + i\sqrt{3})^3 = 8e^{i\pi} = -8$$

Problem 4: Express the 6 sixth roots of 1 in the form a + bi.

Solution: In polar form the sixth roots of 1 are $e^{i\pi k/3}$ where $k = 0, 1, 2, \dots, 5$. Thus (using $\cos(\pi/3) = 1/2, \sin(\pi/3) = \sqrt{3}/2$) the roots in Cartesian form are

$$\pm 1$$
, and $\frac{\pm 1 \pm i\sqrt{3}}{2}$

Problem 5: Solve the equation $x^4 + 16 = 0$

Solution: $\sqrt[4]{-16} = 2 \cdot \sqrt[4]{-1}$ The 4th roots of -1 are $e^{i(\pi/4 + n\pi/2)} = \frac{\pm 1 \pm i}{\sqrt{2}}$. They are shown in the figure at right: Thus, $\sqrt{2} (\pm 1 \pm i)$ are the roots of $x^4 + 16 = 0$.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.