Part I Problems and Solutions

Problem 1: Change to polar form:
a) $-1+i$
b) $\sqrt{3}-i$

Solution:

$$
\begin{array}{ll}
\text { a) }-1+i=\sqrt{2} e^{i 3 \pi / 4} & \text { b) } \sqrt{3}-i=2 e^{-i \pi / 6}
\end{array}
$$

Problem 2: Express $\frac{1-i}{1+i}$ in the form $a+b i$ via two methods: one using the Cartesian form throughout, and one changing numerator and denominator to polar form. Show the two answers agree.

Solution: Using Cartesian form:

$$
\frac{1-i}{1+i}=\frac{(1-i)^{2}}{(1+i)(1-i)}=\frac{-2 i}{2}=-i
$$

Other way:

$$
\begin{aligned}
1-i & =\sqrt{2} e^{-i \pi / 4} \\
1+i & =\sqrt{2} e^{i \pi / 4} \\
\frac{1-i}{1+i} & =\frac{\sqrt{2}}{\sqrt{2}} \cdot e^{(-\pi / 4-\pi / 4) i} \\
& =e^{-i \pi / 2}=-i
\end{aligned}
$$

Problem 3: Calculate each of the following two ways: first by using the binomial theorem and second by changing to polar form and using DeMoivre's formula:
a) $(1-i)^{4}$
b) $(1+i \sqrt{3})^{3}$

Solution:

$$
\text { a) } \begin{aligned}
(1-i)^{4} & =1+4(-i)+6(-i)^{2}+4(-i)^{3}+(-i)^{4} \\
& =1-6+1+i(-4+4)=-4
\end{aligned}
$$

By DeMoivre:

$$
\begin{aligned}
& 1-i=\sqrt{2} e^{-i \pi / 4} \\
&(1-i)^{4}=(\sqrt{2})^{4} e^{-i \pi}=4 \cdot(-1)=-4 \\
& \text { b) } \quad \begin{aligned}
(1+i \sqrt{3})^{3} & =1+3(i \sqrt{3})+3(i \sqrt{3})^{2}+(i \sqrt{3})^{3} \\
& =1+3 i \sqrt{3}+3 \cdot(-3)+i^{3} 3 \sqrt{3} \\
& =-8+i(3 \sqrt{3}-3 \sqrt{3})=-8
\end{aligned}, \begin{aligned}
\\
(1)
\end{aligned} \\
&
\end{aligned}
$$

By DeMoivre:

$$
\begin{aligned}
1+i \sqrt{3} & =2 e^{i \pi / 3} \\
(1+i \sqrt{3})^{3} & =8 e^{i \pi}=-8
\end{aligned}
$$

Problem 4: Express the 6 sixth roots of 1 in the form $a+b i$.
Solution: In polar form the sixth roots of 1 are $e^{i \pi k / 3}$ where $k=0,1,2, \cdots, 5$. Thus (using $\cos (\pi / 3)=1 / 2, \sin (\pi / 3)=\sqrt{3} / 2)$ the roots in Cartesian form are

$$
\pm 1, \quad \text { and } \quad \frac{ \pm 1 \pm i \sqrt{3}}{2}
$$

Problem 5: Solve the equation $x^{4}+16=0$
Solution: $\sqrt[4]{-16}=2 \cdot \sqrt[4]{-1}$
The 4 th roots of -1 are $e^{i(\pi / 4+n \pi / 2}=\frac{ \pm 1 \pm i}{\sqrt{2}}$. They are shown in the figure at right:
Thus, $\sqrt{2}(\pm 1 \pm i)$ are the roots of $x^{4}+16=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

