18.03SC Practice Problems 32

First order linear systems

Solution suggestions

Vocabulary/Concepts: system of differential equations; linear, time-independent, homogeneous; matrix, matrix multiplication; solution, trajectory, phase portrait; companion matrix.

1. *Practice in matrix multiplication: Compute the following products.*

(a)
$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + 2y \end{bmatrix}$$

(b) $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x & y \\ 2x & 2y \end{bmatrix}$
(c) $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$
(d) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x & u \\ y & v \end{bmatrix} = \begin{bmatrix} x + 2y & u + 2v \\ 3x + 4y & 3u + 4v \end{bmatrix}$

2. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 be any 2×2 matrix.

Multiplying by the matrix A sends any vector $\begin{bmatrix} x \\ y \end{bmatrix}$ to another vector $A \begin{bmatrix} x \\ y \end{bmatrix}$. This operation can be visualized by thinking about where it sends the square with corners

$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \mathbf{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \mathbf{i} + \mathbf{j} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

For each of the following matrices A, draw segments connecting the dots $\mathbf{0}$, A \mathbf{i} , A $(\mathbf{i} + \mathbf{j})$, A \mathbf{j} , $\mathbf{0}$, and come up with a verbal description of the operation.

(a) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$: hold the *x*-direction unchanged, but stretch the *y*-direction by a factor of 2.

(b) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$: hold the bottom two vertices fixed on the *x*-axis, but move the upper two vertices horizontally to the right by one unit.

(c)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
: reflect about the *x*-axis.

(d)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
: reflect about the line $y = x$.

(e) $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$: holding the vertex at the origin fixed, first rotate the square 45° clockwise, then reflect it about the *x*-axis, and finally stretch the four sides by a factor of $\sqrt{2}$.

3. *Examine the equation*

$$\ddot{x} + 2\dot{x} + 2x = 0$$

(a) What is the companion matrix A of this second order equation?

By definition, the companion matrix of a higher order differential equation is the matrix of the linear system obtained by introducing enough new variables to denote the intermediate derivatives of x.

Since this is a second order equation, we will only need to introduce one new variable, and *A* will be a 2×2 matrix.

So let $y = \dot{x}$. Then $\dot{y} = \ddot{x}$, and our second order equation becomes $\dot{y} + 2y + 2x = 0$. With the introduction of this new variable, our single-variable second order equation translates into the following first order system in two variables:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -2x - 2y. \end{cases}$$

We can now read off that

$$A = \left[\begin{array}{cc} 0 & 1 \\ -2 & -2 \end{array} \right].$$

(b) Find two independent real solutions of this equation.

The characteristic polynomial of the original equation is $p(s) = s^2 + 2s + 2 = (s+1)^2 + 1$. This polynomial has complex conjugate roots $s = -1 \pm i$, so two independent complex solutions are $e^{(-1+i)t}$ and $e^{(-1-i)t}$, and two independent real solutions are

$$\{e^{-t}\cos t, e^{-t}\sin t\}.$$

(c)* Now let $x_1(t)$ denote the solution with initial condition $x_1(0) = 0$, $\dot{x}_1(0) = 1$. Find it, and then write down the corresponding solution $\mathbf{u}_1(t) = \begin{bmatrix} x_1(t) \\ \dot{x}_1(t) \end{bmatrix}$ of the equation $\dot{\mathbf{u}} = A\mathbf{u}$. What is $\mathbf{u}_1(0)$? *Sketch the graphs of* $x_1(t)$ *and of* $\dot{x}_1(t)$ *, and sketch the trajectory of the solution* $\mathbf{u}_1(t)$ *. Compare these pictures.*

The solution that satisfies the given initial conditions is $x_1(t) = e^{-t} \sin t$, so the corresponding solution of the companion system is

$$\mathbf{u_1}(t) = \begin{bmatrix} x_1(t) \\ \dot{x_1}(t) \end{bmatrix} = \begin{bmatrix} e^{-t}\sin t \\ e^{-t}(\cos t - \sin t) \end{bmatrix}.$$

At time t = 0 this solution has value $\mathbf{u}_1(t) = (0, 1)$.

The function x_1 has envelope $\pm e^{-t}$, which decays exponentially. The graph of x_1 oscillates inside this envelope, touching the envelope at odd multiples of $\pi/2$. Its derivative \dot{x}_1 has envelope $\pm \sqrt{2}e^t$, and the graph of \dot{x}_1 touches the envelope when t has the form $\frac{4k-1}{4}\pi$.

As a result, the trajectory given by $\mathbf{u}_1(t)$ in the $(x, y = \dot{x})$ -plane is an inward spiral, elongated in the northwest-southeast direction.

(d)* Sketch a few more trajectories to fill out the phase portrait. In particular, sketch the trajectory of $\mathbf{u}_2(t)$ with $\mathbf{u}_2(0) = \mathbf{i}$.

When trajectories of this companion equation cross the x axis, at what angle do they cross it?

When trajectories cross the *x* axis, they cross at an angle of $\pi/2$.

4. Let a + bi be a complex number. There is a matrix A such that if (a + bi)(x + yi) = (v + wi) then

$$A\left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}v\\w\end{array}\right].$$

(a) Find this matrix A for general a + bi.

Multiplying out, we get that (a + bi)(x + yi) = ax + ayi + bxi - by = (ax - by) + i(ay + bx), so we must have v = ax - by, w = bx + ay.

This defines the rows of our transformation matrix, so

$$A = \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right].$$

(b) What is the matrix for a + bi = 2? For a + bi = i? For a + bi = 1 + i? Draw the parallelograms discussed in (2) for these matrices.

For a + bi = 2, $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, and the parallelogram is a square of length 2.

For a + bi = i, $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, and the parallelogram is a square of length 1, rotated by 90 degrees counterclockwise around the origin.

For a + bi = 1 + i, $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, and the parallelogram is a square of length $\sqrt{2}$, rotated by 45 degrees counterclockwise around the origin.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.