18.03SC Practice Problems 32

First order linear systems

Solution suggestions

Vocabulary/Concepts: system of differential equations; linear, time-independent, homogeneous; matrix, matrix multiplication; solution, trajectory, phase portrait; companion matrix.

1. Practice in matrix multiplication: Compute the following products.
(a) $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=[x+2 y]$
(b) $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{ll}x & y\end{array}\right]=\left[\begin{array}{cc}x & y \\ 2 x & 2 y\end{array}\right]$
(c) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a x+b y \\ c x+d y\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}x & u \\ y & v\end{array}\right]=\left[\begin{array}{cc}x+2 y & u+2 v \\ 3 x+4 y & 3 u+4 v\end{array}\right]$
2. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be any 2×2 matrix.

Multiplying by the matrix A sends any vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ to another vector $A\left[\begin{array}{l}x \\ y\end{array}\right]$. This operation can be visualized by thinking about where it sends the square with corners

$$
\mathbf{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{i}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{j}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{i}+\mathbf{j}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

For each of the following matrices A, draw segments connecting the dots $\mathbf{0}, A \mathbf{i}, A(\mathbf{i}+\mathbf{j})$, Aj, $\mathbf{0}$, and come up with a verbal description of the operation.
(a) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$: hold the x-direction unchanged, but stretch the y-direction by a factor of 2 .
(b) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$: hold the bottom two vertices fixed on the x-axis, but move the upper two vertices horizontally to the right by one unit.
(c) $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$: reflect about the x-axis.
(d) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$: reflect about the line $y=x$.
(e) $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$: holding the vertex at the origin fixed, first rotate the square 45° clockwise, then reflect it about the x-axis, and finally stretch the four sides by a factor of $\sqrt{2}$.
3. Examine the equation

$$
\ddot{x}+2 \dot{x}+2 x=0 .
$$

(a) What is the companion matrix A of this second order equation?

By definition, the companion matrix of a higher order differential equation is the matrix of the linear system obtained by introducing enough new variables to denote the intermediate derivatives of x.

Since this is a second order equation, we will only need to introduce one new variable, and A will be a 2×2 matrix.
So let $y=\dot{x}$. Then $\dot{y}=\ddot{x}$, and our second order equation becomes $\dot{y}+2 y+2 x=0$. With the introduction of this new variable, our single-variable second order equation translates into the following first order system in two variables:

$$
\left\{\begin{array}{rr}
\dot{x}= & y \\
\dot{y}= & -2 x-2 y .
\end{array}\right.
$$

We can now read off that

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right] .
$$

(b) Find two independent real solutions of this equation.

The characteristic polynomial of the original equation is $p(s)=s^{2}+2 s+2=$ $(s+1)^{2}+1$. This polynomial has complex conjugate roots $s=-1 \pm i$, so two independent complex solutions are $e^{(-1+i) t}$ and $e^{(-1-i) t}$, and two independent real solutions are

$$
\left\{e^{-t} \cos t, e^{-t} \sin t\right\} .
$$

(c)* Now let $x_{1}(t)$ denote the solution with initial condition $x_{1}(0)=0, \dot{x}_{1}(0)=1$. Find it, and then write down the corresponding solution $\mathbf{u}_{1}(t)=\left[\begin{array}{l}x_{1}(t) \\ \dot{x}_{1}(t)\end{array}\right]$ of the equation $\dot{\mathbf{u}}=A \mathbf{u}$. What is $\mathbf{u}_{\mathbf{1}}(0)$?

Sketch the graphs of $x_{1}(t)$ and of $\dot{x}_{1}(t)$, and sketch the trajectory of the solution $\mathbf{u}_{\mathbf{1}}(t)$. Compare these pictures.
The solution that satisfies the given initial conditions is $x_{1}(t)=e^{-t} \sin t$, so the corresponding solution of the companion system is

$$
\mathbf{u}_{1}(t)=\left[\begin{array}{l}
x_{1}(t) \\
\dot{x}_{1}(t)
\end{array}\right]=\left[\begin{array}{c}
e^{-t} \sin t \\
e^{-t}(\cos t-\sin t)
\end{array}\right] .
$$

At time $t=0$ this solution has value $\mathbf{u}_{\mathbf{1}}(t)=(0,1)$.
The function x_{1} has envelope $\pm e^{-t}$, which decays exponentially. The graph of x_{1} oscillates inside this envelope, touching the envelope at odd multiples of $\pi / 2$. Its derivative \dot{x}_{1} has envelope $\pm \sqrt{2} e^{t}$, and the graph of \dot{x}_{1} touches the envelope when t has the form $\frac{4 k-1}{4} \pi$.
As a result, the trajectory given by $\mathbf{u}_{1}(t)$ in the $(x, y=\dot{x})$-plane is an inward spiral, elongated in the northwest-southeast direction.
(d)* Sketch a few more trajectories to fill out the phase portrait. In particular, sketch the trajectory of $\mathbf{u}_{\mathbf{2}}(t)$ with $\mathbf{u}_{\mathbf{2}}(0)=\mathbf{i}$.
When trajectories of this companion equation cross the x axis, at what angle do they cross it?

When trajectories cross the x axis, they cross at an angle of $\pi / 2$.
4. Let $a+b i$ be a complex number. There is a matrix A such that if $(a+b i)(x+y i)=$ $(v+w i)$ then

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
v \\
w
\end{array}\right] .
$$

(a) Find this matrix A for general $a+b i$.

Multiplying out, we get that $(a+b i)(x+y i)=a x+a y i+b x i-b y=(a x-b y)+$ $i(a y+b x)$, so we must have $v=a x-b y, w=b x+a y$.
This defines the rows of our transformation matrix, so

$$
A=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] .
$$

(b) What is the matrix for $a+b i=2$? For $a+b i=i$? For $a+b i=1+i$? Draw the parallelograms discussed in (2) for these matrices.
For $a+b i=2, A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, and the parallelogram is a square of length 2.
For $a+b i=i, A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, and the parallelogram is a square of length 1 , rotated by 90 degrees counterclockwise around the origin.

For $a+b i=1+i, A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$, and the parallelogram is a square of length $\sqrt{2}$, rotated by 45 degrees counterclockwise around the origin.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

