The Characteristic Polynomial

1. The General Second Order Case and the Characteristic Equation

For m, b, k constant, the homogeneous equation

$$
\begin{equation*}
m \ddot{x}+b \dot{x}+k x=0 . \tag{1}
\end{equation*}
$$

is a lot like $\dot{x}+k x=0$, which has as solution $x=e^{-k t}$. We'll be optimistic and try for exponential solutions, $x(t)=e^{r t}$, for some as yet undetermined constant r.

To see which values of r might work, plug $x(t)=e^{r t}$ into (1). Organize the calculation: the $k], b], m]$ are flags indicating that we should multiply the corresponding line by this number.

$$
\begin{array}{cc}
k] & \begin{array}{l}
x=e^{r t} \\
b]
\end{array} \quad \dot{x}=r e^{r t} \\
m] \quad & \ddot{x}=r^{2} e^{r t} \\
\Rightarrow m \ddot{x}+b \dot{x}+k x=\left(m r^{2}+b r+k\right) e^{r t}=0 .
\end{array}
$$

An exponential is never zero, so we can divide this equation by $e^{r t}$. We have found that $e^{r t}$ is a solution to (1) exactly when r satisfies the characteristic equation

$$
m r^{2}+b r+k=0
$$

The left hand side is a polynomial called, naturally enough, the characteristic polynomial and usually denoted $p(r)$. (You will often also see s used as the variable instead of r. With this notation the characteristic polynomial is $p(s)=m s^{2}+b s+k$.)

Example. Find all the solutions to $\ddot{x}+8 \dot{x}+7 x=0$.
Solution. The characteristic polynomial is $r^{2}+8 r+7$. We want the roots. One reason we wrote out the polynomial was to remind you that you can find roots by factoring it. This one factors as $(r+1)(r+7)$ so the roots are $r=-1$ and $r=-7$, with corresponding exponential solutions are $x_{1}(t)=e^{-t}$ and $x_{2}(t)=e^{-7 t}$.

By superposition, the linear combination of independent solutions gives the general solution:

$$
x(t)=c_{1} e^{-t}+c_{2} e^{-7 t}
$$

Suppose that we have initial conditions $x(0)=2$ and $\dot{x}(0)=-8$ then we can solve for c_{1} and c_{2}. Use $\dot{x}(t)=-c_{1} e^{-t}-7 c_{2} e^{-7 t}$ and substitute $t=0$ to get

$$
\begin{aligned}
& x(0)=c_{1}+c_{2}=2 \\
& \dot{x}(0)=-c_{1}-7 c_{2}=-8
\end{aligned}
$$

Adding these two equations yields $-6 c_{2}=-6$, so $c_{2}=1$ and $c_{1}=1$. The solution to our DE with the given initial conditions is then $x(0)=2$, $\dot{x}(0)=-8$ is

$$
x(t)=e^{-t}+e^{-7 t} .
$$

2. The General nth Order Case

In the same way we can take the homogeneous constant coefficient linear equation of degree n

$$
a_{n} x^{(n)}+\cdots+a_{1} \dot{x}+a_{0} x=0
$$

and get its characteristic polynomial,

$$
p(r)=a_{n} r^{n}+\cdots+a_{1} r+a_{0}
$$

The exponential $x(t)=e^{r t}$ is a solution of the homogeneous DE if and only if r is a root of $p(r)$, i.e. $p(r)=0$. By superposition, any linear combination of these exponentials is also a solution.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

